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Symmetry protected topological (SPT) phases with gapless edge excitations have been shown to
exist in strongly interacting bosonic/fermionic systems and it is highly desirable to identify practical
systems realizing such phases through numerical simulation. A central question to be addressed is
how to determine the SPT order in the system given the simulation result while no local order
parameter can be measured to distinguish the phases from a trivial one. In the tensor network
approach to simulate strongly interacting systems, the quantum state renormalization algorithm has
been shown to be effective in identifying intrinsic topological orders. Here we show that a modified
algorithm can identify SPT orders by extracting the symmetry protected fixed point entanglement
pattern in the ground state wave function which is essential for the existense of SPT order. The
key to this approach is to add proper symmetry protection to the renormalization process. We
demonstrate the effectiveness of this algorithm with examples of nontrivial SPT phases with internal
symmetry in 1D and internal and translation symmetry in 2D.
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I. INTRODUCTION

Symmetry protected topological (SPT) phases are
bulk-gapped quantum phases with symmetries [1]. If the
system is on a closed manifold, the ground state does
not spontaneously break the symmetry. On the other
hand, if the system has a boundary, there are gapless or
degenerate edge states as long as the symmetries are not
explicitly broken. Therefore SPT phases represent a non-
trivial type of order beyond Landau’s symmetry breaking
theory. Topological insulators and superconductors are
examples of SPT phases in free fermion systems [2–7].
In one spatial dimension, a complete understanding of
all possible SPT phases in interacting systems has been
obtained[8–15] starting from the classic example of Hal-
dane phase in spin 1 chains[16, 17]. Recently, it has been
discovered that nontrivial SPT orders can also exist in
strongly interacting boson/fermion systems in two and
higher dimensions [1, 19]. Exactly solvable models were
presented which has a gapped and symmetric bulk and
gapless symmetry protected edge states [19–21].

It is highly desirable to find such strongly interacting
SPT phases in experiments, similar to their free fermion
counterparts. While the exactly solvable models prove
the existence of SPT orders in strongly interacting sys-
tems, it is very unlikely that such models can be realized
in experiments as they usually involve multi-body (6 or
7-body) interactions. In order to determine which phys-
ically realistic systems can have SPT order, numerical
simulations are necessary. The tensor network renor-
malization algorithm [22–27] is a powerful and generic
approach to simulate strongly interacting boson/fermion
systems in two and higher dimensions and therefore can
play a major role in the discovery of strongly interacting
SPT orders.

A major question to be addressed in the tensor net-
work approach to simulate SPT phases is how to identify
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the SPT order. Symmetry breaking phases can be iden-
tified by measuring local order parameters in the ground
states. However, as SPT ground states do not break any
symmetry, no local measurement can distinguish an SPT
phase from a trivial symmetric phase. Systems with in-
trinsic topological order (like Z2 spin liquids or fractional
quantum Hall systems) on the other hand can be identi-
fied by measuring the ground state degeneracy on a torus
[28, 29] or the topological entanglement entropy [30, 31].
However, these quantities are both trivial for SPT states.

An important signature of SPT phases is the existence
of nontrivial entanglement structure in their ground
states [1, 20]. Compared to trivial symmetric phases
whose ground states can be simple product states (for
example the

∏
(| ↑〉 + | ↓〉) state in the transverse field

Ising model), the entanglement structure in the ground
states of SPT phases cannot be totally removed as long as
symmetry is not broken. Therefore, SPT ground states
are characterized by short-range entanglement which is
protected by symmetry. This is similar to systems with
intrinsic topological orders where the long-range entan-
glement patterns in the ground states are essential for the
existence of the order. It has been shown that the long-
range entanglement patterns can be effectively extracted
using a quantum state renormalization algorithm based
on the tensor network representation of the ground states
[32, 33]. Can similar ideas be applied to SPT orders?

Naively, one might expect that the quantum state
renormalizaton algorithm fails to distinguish SPT order
from trivial symmetric phases, as the algotirhm is de-
signed to remove short range entanglement structures
from the state and retain only the long-range one. After
removing all short range entanglement, the ground state
of SPT phases becomes a total product state which is the
same as a trivial symmetry state. However, this is only
possible if the symmetry of the system is broken during
the process. If we require that symmetry is always pre-
served during the renormalization procedure, some short-
range entanglement structures are always kept which can
be used to identify the SPT order at the renormalization
fixed point.

In this paper, we show how such a symmetry protec-
tion can be properly added to the quantum state renor-
malizaiton algorithm. The algorithm we propose applies
to general 1-dimensional (1D) SPT phases protected by
internal symmetry and 2-dimensional (2D) weak SPT
phases protected by both internal and translation sym-
metry. As an example, we demonstrate the effectiveness
of our algorithm by applying it to the 1D and 2D AKLT
phases and show that the SPT order in these systems can
be successfully identified from the fixed point short-range
entanglement pattern of the states.

The paper is organized as follows: in section II, we re-
view the notion of SPT order (especially that in AKLT
states) and the quantum state renormalization algorithm
which can be used to identify intrinsic topological or-
ders; section III discusses how symmetry protection can
be added to the quantum state renormalization proce-

dure and how it can be used to identify the SPT order
in 1D and 2D AKLT states which allows us to determine
the phase diagram of 1D and 2D anti-ferromagnetic spin
models; in section IV we conclude our discussion and talk
about open questions. In Appendix A we briefly review
the notion of projective representation; some numerical
results of solving 2D AKLT-like model are given in Ap-
pendix B, and the explicit form of its fixed point tensor
in Appendix C. We want to emphasize that, even though
we use as examples the AKLT states with SO(3) sym-
metry, our algorithm works equally well for SPT orders
with any other symmetry group.

II. REVIEW

A. Symmetry protected topological order

Symmetry protected topological (SPT) order is char-
acterized by the robust gapless edge modes of a bulk
gapped phase without intrinsic topological order or spon-
taneously symmetry breaking. These gapless edge modes
are protected as long as the symmetry of the system is
unbroken.

In one dimensional systems, such a protection has been
well understood as coming from the projective represen-
tation carried by the edge degree of freedom.[8, 9, 12, 13,
15] Consider a system with global internal symmetry G.
It was realized that, at large enough length scale (much
larger than correlation length), the ground state of all
1D SPT phases has a valence bond structure as shown
in Fig.1 (left). The degrees of freedom on each site (big
circle) splits into two parts (small dots) which form en-
tangled pairs (connected dots) with degrees of freedom
on a neighboring site. Each dot carries a projective repre-
sentation of G while the total representation on each site
is linear. Matrices u(g) form a projective representation
of symmetry group G if

u(g1)u(g2) = ω(g1, g2)u(g1g2), g1, g2 ∈ G. (1)

where ω(g1, g2) are U(1) phase factors. If ω(g1, g2) = 1,
the representation is linear. A key property of nontriv-
ial projective representations is that the representation
space cannot be one dimensional. See Appendix A for
a brief introduction to projective representation. Each
entangled pair is invariant under the symmetry, there-
fore the bulk of the system is symmetric and gapped.
However, on the boundary there are unpaired projective
edge states, which are degenerate under the protection
of symmetry.

The simplest example of a 1D SPT phase is the spin 1
antiferromagnetic Heisenberg chain with SO(3) spin ro-

tation symmetry H =
∑
i
~Si~Si+1.[16] For this state, the

degree of freedom on each site (spin 1) transforms linearly
under the symmetry. In the ground state, the spin 1 ef-
fectively splits into two projective parts (spin 1/2) which
form singlets between neighboring sites. The key feature
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FIG. 1: Valence bond structure of 1D SPT states and 2D weak
SPT states. Each dot carries a projective representation of the
internal symmetry and connected dots represent entanlged
singlet pairs. In 1D, symmetry acts linearly on each site (big
circle) while in 2D on-site symmetry representation depends
on the lattice.

of this so-called ‘Haldane phase’ is the existence of edge
spin 1/2 which leads to protected edge degeneracy.[17]

The valence bond picture of 1D SPT states can be gen-
eralized to 2D, giving rise to 2D SPT phases protected by
both internal and translation symmetry. Such SPT or-
ders are usually said to be ‘weak’ compared to the ‘strong’
ones which are stable even with disorder. With SO(3)
and translation symmetry, for example, a representative
2D weak SPT state is the 2D AKLT state[18] defined on
a honeycomb lattice. Each lattice site contains one spin
3/2 and the spin 3/2 can be decomposed into three spin
1/2’s each forming a spin singlet with another spin 1/2
on a neighboring site, as shown in Fig. 1 (right). The
bulk of the system is again symmetric and gapped. On
the edge of the system, there is a chain of spin 1/2’s left
uncoupled. Perturbations to the edge may couple these
spin 1/2’s. However, as long as the perturbation pre-
serves SO(3) and translation symmetry, the edge state
is gapless [43]. Therefore, the 2D AKLT state has SPT
order protected by SO(3) and translation symmetry.

The SPT order in the 1D and 2D AKLT states remains
when the on-site Hilbert space is expanded to contain two
or three spin 1/2’s instead of just the symmetric subspace
of spin 1 and spin 3/2. With this modification, the wave
function is a product of singlets on each link and we call
such states the dimer state.

B. Quantum state renormalization group

The Quantum State Renormalization Group (QSRG)
transformation acts on a quantum state and aims to
extract the universal property of the system from the
ground state wave function. The basic idea is to re-
move non-universal short range entanglement structures
related to the microscopic details of the system from the
wave function before coarse graining. After many rounds
of QSRG the original ground state can flow to a sim-
pler fixed-point state, from which the phase the system
belongs to can be identified.

Such a QSRG algorithm was first demonstrated for
1D quantum states based on the matrix product state

representation [37]

|ψ〉 =
∑

i1,i2,...,iN

Tr(Ai1Ai2 ...AiN )|i1i2...iN 〉 (2)

where ik = 1...d with d being the physical dimension of
a spin at each site, Aik ’s are χ × χ matrices related to
the physical state |ik〉 with χ being the inner dimension
of the MPS.

To implement the QSRG on the matrix product state,
construct the double tensor as

Eαγ,βδ =
∑
i

Aiαβ × (Aiγδ)
∗ (3)

The double tensor is just the transfer matrix for calculat-
ing MPS expectation values. Treat E as a χ2×χ2 matrix
with row index αγ and column index βδ. Combine the
double tensor of the two sites together into Ẽ = EE.
Then think of Ẽαγ,βδ as a matrix with row index αβ and
column index γδ. It is easy to see that with such a recom-
bination, Ẽ is a positive matrix and can be diagonalized

Ẽαγ,βδ =
∑
ĩ

λĩVĩ,αβV
∗
ĩ,γδ

, (4)

where we have kept only the non-zero eigenvalues λĩ and

the corresponding eigenvectors Vĩ,αβ . Ã is then given by

Ãĩαβ =
√
λĩVĩ,αβ , (5)

which are the matrices representing the renormalized
state.

An important property of E is that it uniquely de-
termines the matrices, and hence the state, up to a lo-
cal change of basis on each site [44, 45]. That is, if

Eαγ,βδ =
∑
iA

i
αβ × (Aiγδ)

∗ =
∑
iB

j
αβ × (Bjγδ)

∗, then

Aiαβ and Bjαβ are related by a unitary transformation U :

Bjαβ =
∑
i UjiA

i
αβ . Therefore, from the above procedure

we know that the renormalized state can be obtained
from the original state with local unitaries on every two
sites

|ψ〉 → |ψ̃〉 = U1,2 ⊗ U3,4 ⊗ ...⊗ U2i−1,2i ⊗ ...|ψ〉. (6)

By setting the range of ĩ to be over only the nonzero λ’s,
U removes local entanglement in an optimal way. This
is similar to the disentangler in the multi-scale entan-
glement renormalization ansatz (MERA) [39] before the
coarse-graining. After several rounds of QSRG transfor-
mation, all gapped MPS flows to a fixed point form and
the procedure can be performed without any truncation
to χ.

An analogous QSRG procedure exists for 2D quantum
states based on the tensor product representation[32]

|ψ〉 =
∑

i1,i2,...im...

tTr(T i1T i2 ...T im ...)|i1i2...im...〉 (7)
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where T iαβγ... is a local tensor with physical index i and
internal indices αβγ etc. tTr denotes tensor contraction
of all the connected inner indices according to the un-
derlying lattice structure. Without loss of generality, we
consider the honeycomb lattice here.
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FIG. 2: The QSRG procedure on honeycomb lattice (part 1):
(1) combining double tensor T1 and T2 on the neighboring
sites into a double tensor T. (2) decomposing the double

tensor T into the tensor T̃ . (3) decomposing the tensor T̃ ,
resulting in tensors Ta, Tb.

To implement QSRG, first we form a double tensor T
on each site T1;α′γ′ε′,αγε =

∑
i(T

i
α′γ′ε′)

∗ × T iαγε as shown
in Fig. 2. Contract T1 and T2 on neighboring sites to
form a new double tensor T

Tα′β′γ′δ′,αβγδ =
∑
ε,ε′

T1;α′γ′ε′,αγεT2;ε′β′δ′,εβδ. (8)

This completes the step (1) of Fig. 2. Like in the 1D
case, we then spectrally decompose the double tensor,

Tα′β′γ′δ′,αβγδ =
∑
j

λj(T̂
j
α′β′γ′δ′)

∗ × T̂ jαβγδ. (9)

By retaining only the tensors T̂ j with nonzero λj , we
apply a local unitary and remove entanglement between
the two sites.

One important difference of 2D gapped states from the
1D case is that in 2D the amount of entanglement of a
region grows linearly with the boundary of the region.
Straight-forward coarse-graining in 2D would lead to un-
bounded growth in entanglement and an exponential in-
crease in the size of the representing tensor. Therefore
a splitting procedure is necessary on T̂ jα′β′γ′δ′ , similar to

the Tensor Renormalization Group[25], which separates
both the inner and the physical indices into two sets.

The inner indices can be naturally separated according
to their orientation, for example into {αδ} and {βγ}. The
best way to split the physical indices, ideally, would be
to minimize entanglement in the resulting tensor T̃ j1j2αβγδ

between {j1αδ} and {j2βγ}. Such an optimization proce-
dure can be numerically costly to implement. Instead we

choose to fix the splitting procedure in a particular way
before implementing the QSRG. For example, in [32], one
splits j into two sets {lm} and {mr} by taking the jth

eigenvector T̂ jαβγδ, replacing αβγδ with lmnr, and using
it as the physical label for the tensor. The total ten-

sor becomes T̃
{lm}{nr}
αβγδ =

∑
j

√
λj(T̂

j
lmnr)

∗ × T̂ jαβγδ This
is a natural and automatic way of splitting the physical
index that maintains the structure of the tensor. In our
following discussion of Symmetry Protected (SP)-QSRG,
however, we need to choose other splitting procedures to
also preserve the symmetry of the tensor. Note that the
double tensor remains invariant with this splitting.

After the splitting, we do a singular value decomposi-
tion of T̃ in the direction orthogonal to the link between
T1 and T2 and decompose T̃ into Ta and Tb as shown in
step (3) of Fig. 2,

T̃ j1j2αβγδ =
∑
ξ

T j1a;α,δξ × T
j2
b;βγξ. (10)
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FIG. 3: The QSRG procedure on honeycomb lattice (part 2):
Merge three tensors Ta, Tb and, Tc around a triangle to form
a new tensor T I .

Next, we coarse grain the lattice labeled by the tensor
T̃ by implementing one step of block decimation in the
TRG method [25]. To do this, we combine the resultant
three tensors that meet at a triangle to form a new tensor
with physical index I as shown in the Fig. 3,

T Iαβγ =
∑
δεξ

T aa,αδε × T bb,βδξ × T cc,γξε. (11)

where I denotes the combination of all physical indices
a, b and c. This new tensor is the resultant one after one
round of QSRG proposed in [32].

After repeating the above QSRG procedure, the origi-
nal TPS will then flow into a fixed-point state with SRE
removed but not the LRE. Therefore, we can use this
method to find out the possible topologically ordered
phases by examining the fixed-point tensor. Moreover,
this method is easy to be implemented numerically and
has been used to identify and study phases with intrin-
sic topological order, for example see [33]. In general,
there are certain arbitrariness in choosing the split pro-
cedure. Different splitting corresponds to different way
to remove local entanglement and could result in differ-
ent fixed point tensor. However, as long as we follow one
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particular splitting procedure throughout our RG calcu-
lation, tensors within the same phase should flow to the
same fixed point form. We will see explicit examples of
this in our following discussions.

III. SYMMETRY PROTECTED QUANTUM
STATE RENORMALIZATION

Although the above QSRG procedure is quite power-
ful in identifying the intrinsic topological orders, it is not
suitable when we consider SPT orders. This is because,
the above QSRG procedure is designed to remove short
range entanglement, which makes SPT orders indistin-
guishable from trivial orders. Indeed, consider applying
the above QSRG procedure to the 2D dimer state on the
honeycomb lattice. Each bond originally has a singlet on
it. When applying the steps in Fig.2 to the dimer state on
a honeycomb lattice, the singlet on the horizontal bond
shrinks and, in the most natural and minimum way to re-
split in the vertical direction, no singlet is regenerated.
After several rounds of RG, it is easy to see that the
dimer structure can be completely removed, resulting in
a total product state with no SPT order.

FIG. 4: Applying QSRG procedure given in [32] to 2D dimer
state. After applying steps in Fig.2, the dimer on the middle
bond gets removed. The dimer structure can be completely
removed after a couple rounds of RG.

The key reason that the dimer state flows to a trivial
state under the QSRG scheme is because the symmetry
of the system is not preserved when doing local unitary
transformations on the state. Therefore, we need to find a
way to explicitly incorporate the symmetry of the system
into the RG scheme in order to preserve the short range
entanglement structure of SPT states in the RG flow. In
this section, we will propose such a symmetry protected
QSRG (SP-QSRG) procedure for TPS and demonstrate
its effectiveness in identifying the SPT order from fixed
point tensors.

In order to devise the 2D procedure, let’s first start
with the simpler 1D case. The 1D QSRG procedure as
given in [37] does preserve the short range entanglement
structure in the fixed point tensor of, for example, 1D
AKLT state, hence allowing the identification of the SPT
order. However, a major difference between 1D and 2D
QSRG is that, in 1D the amount of entanglement of a seg-
ment of an MPS is bounded, therefore we can perform
coarse graining without explicitly removing short range
entanglement. In 2D, this is not the case. The amount of
entanglement of a region in a TPS grows linearly with the
length of its boundary, therefore straightforward coarse

graining would lead to unbounded growth of entangle-
ment and hence unbounded growth in the size of the rep-
resenting tensor. In order to maintain a bounded numer-
ical complexity during the RG procedure, it is important
that irrelevant entanglement structures are removed us-
ing, for example, the merging and splitting procedure as
shown in Fig. 2, as discussed in the previous section.
The key to our symmetry protected RG scheme is then
to preserve symmetry in the merging and splitting proce-
dure. Before we do this in 2D, let’s first add the merging
and splitting procedure into 1D RG scheme and show
how symmetry protection can be incorporated.

An important property of SPT order, which is going to
be useful in our following RG procedure, is that it is sta-
ble even if addition or removal of local degrees of freedom
are allowed as long as they form linear representations of
the symmetry group. For example, in the case of Hal-
dane phase with SO(3) rotation symmetry, its edge spin
1/2 degrees of freedoms are stable even if integer spins
can be added locally to the system. The fractional edge
spin 1/2 can become other half integer spin but cannot
become a trivial spin 0 through interaction with any in-
teger spin. In contrast, if we consider a spin 2 state [48]
with similar valence bond structure as the spin 1 AKLT
state, then its edge spin 1 can be removed by adding an
extra spin 1 to the edge which forms a singlet with the
original edge spin 1. Therefore, the spin 2 AKLT state
is in a trivial SPT phase. Its edge state degeneracy is
not protected under SO(3) rotation symmetry. On the
other hand, adding or removing projective representation
can destroy SPT order and is hence not allowed in the
RG flow. Therefore in our SP-QSRG procedure, we are
going to add or remove linear, not projective, symmetry
representations locally to our need to flow the quantum
state to a fixed point without breaking symmetry.

A. One-dimensional case

1. Algorithm

The schematic procedure of the 1D SP-QSRG is shown
in Fig. 5. We are going to specify the detailed procedure
of splitting and merging of the neighboring site tensors
in order to remove the SRE and coarse-graining. We
will pay special attention to how the on-site symmetry
is preserved in the procedure of splitting and merging.
The whole procedure can be broken into two parts: dis-
entangling (see Fig. 6 step(1)-(4) and Fig. 5 step(1))
and coarse-graining (see Fig. 6 step(5)-(6) and Fig. 5
step(3)).

Suppose that the ground state considered is repre-
sented as an MPS with a rank-three tensor Aiα,β , where
i is the physical index and α , β are the left and right
indices of the inner bond, respectively. For simplicity of
notation, we will assume translational invariance so that
the tensor A is the same for all sites.

Our proposed SP-QSRG is implemented as follows.
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FIG. 5: Schematic procedure of the revised 1D QSRG. The
step (1) is to remove the SRE by performing local unitary
transformations. The steps (2) and (3) are to coarse grain the
lattice by removing the local degrees of freedoms and merging
two sites.
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FIG. 6: Schematic procedure of the SP-QSRG.

1. Step (1) of Fig. 6:

Firstly, we form a two-site positive double tensor.
It is the same as the first step of the original QSRG.

2. Step (2) of Fig. 6:

Then think of E′αγ,α′γ′ as a matrix with row index

α, γ and column index α′, γ′. Perform the spectral
decomposition as discussed before, i.e.,

E′αγ,α′γ′ =
∑
j

λj(Â
j
α′,γ′)

∗ × Âjα,γ . (12)

where we have kept only the non-zero eigenvalues
λj ’s and the corresponding eigenvectors Âjα,γ . With
such a spectral decomposition we can form a new
tensor ÃIα,β =

√
λIÂ

I
α,β whose double tensor is still

E′. As mentioned, this step is to perform a local
unitary transformation on the two sites, i.e., a dis-
entangler in MERA. In the first two steps of the
scheme, symmetry can be naturally preserved.

3. Step (3) and (4) of Fig. 6:

Now we add the splitting procedure to the 1D
QSRG scheme. While such a procedure is not en-
tirely necessary in 1D, it will be crucial to the 2D
QSRG scheme. Split the physical index I into two
parts s1 and s2 with a unitary operator Os1s2,I

Θs1,s2
α,γ =

∑
I

Os1s2,I × ÃIα,β (13)

Then perform a singular value decomposition and
split Θs1,s2

α,γ into two tensors A′s1i−1 and A′s2i

Θs1,s2
α,γ =

∑
β

(A′s1αβ)[2i−1](A′s2βγ )[2i] (14)

In these two steps, symmetry needs to be carefully
preserved as we discuss below.

Step (3), as given in Eq.13, involves locally adding
degrees of freedom. From the discussion about SPT
phases in section II A, we see that in order to pre-
serve SPT order, only linear symmetry representa-
tions can be added or removed in the RG process
of a system. In practice, this will mean that the
physical indices of the site tensors should carry the
same class of projective representation before and
after these steps. Therefore, when we split the site
tensor Ã, we should make sure that s1 and s2 are
in the same class of projective representations as
the physical index of the original tensor A. If nec-
essary, we should enlarge the Hilbert space of the
physical index of Ã when splitting. On the other
hand, if the symmetry representations on each site
can change during the RG process, the SPT order
of the state can be totally lost. To do the splitting,
we need to use an operator Os1s2,I . We will dis-
cuss how to determine this operator O in the next
section.

For example, if the on-site symmetry protecting the
SPT is SO(3), then the representations for the inte-
ger spins and the half-integer spins are in different
projective classes. Therefore, if we start with an
integer spin chain model, we should make sure that
after merging and splitting, the physical indices of
each site are still integer spins. By ‘measuring’ the
quantum numbers of the original physical index,
we can properly assign the symmetry representa-
tion to the new physical indices. We demonstrate
an explicit procedure with the AKLT example in
the next section.

Similar procedure can also be followed for other on-
site symmetry groups such as Z2 × Z2. In such a
case, irreducible linear representations are all one
dimensional and irreducible projective representa-
tions are all two dimensional. When splitting the
tensor Ã we should make sure that the physical in-
dices of the resultant tensors A′’s are in the same
class of representations as that of A.
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Symmetry preserving considerations are also nec-
essary in step (4). In step (4), when doing the
singular value decomposition as described in Eq.
14, a cut-off might be necessary on the dimension
of β to keep the computation efficient. When do-
ing the cut-off, we need to preserve the symmetry
structure of the tensor by keeping or removing de-
generate blocks together. If we perform the cut-off
without respecting the block structure, systematic
information about the symmetry of the system can
be lost. Such symmetry considerations apply simi-
larly to all groups.

4. Step (5) and (6) of Fig. 6:

We then merge alternatively the A′ tensor on site
2i and 2i+ 1 to form a new site tensor A′′, i.e.,

A′′stα,γ =
∑
ε

(A′s2α,ε)
[2i] × (A′s3ε,γ)[2i+1]. (15)

Here, st denotes the conbination of all physical in-
dices s2 and s3.

This will complete one round of SP-QSRG for 1D
MPS. Schematically the whole procedure on the tensors
is shown in Fig. 6 and the corresponding renormalization
operation on the quantum state is shown in Fig.5. The
key to this procedure is in preserving the symmetry of
the state, which we demonstrate with the example of the
AKLT state in the next section.

2. 1-dimensional AKLT state as an example

We now demonstrate how to apply the SP-QSRG pro-
cedure discussed above to a concrete example of an SPT
state. Let us consider the 1D AKLT [17] MPS with
Ai = σi, where σi (i = x, y, z) are the Pauli matrices.
This AKLT state is shown to have SPT [8, 9, 46] or-
der. Moreover, as shown in [37], the fixed-point state
of the original QSRG is the dimer state, a product of
singlets between each pair of neighboring sites, charac-
terized by the transfer matrix

∑2
i,j=1

1
4 |ii〉〈jj| obtained

from its MPS representation. As we mentioned, in 1D
this QSRG does not destroy the symmetry and so pre-
serves the SPT order. Thus, the dimer and AKLT state
have the same SPT order and we expect them to flow
to the same fixed point under our SP-QSRG procedure
as well. We want to emphasize again that while the SP-
QSRG procedure is not necessary to detect SPT order
in 1D, we study it here in preparation for the 2D case
where the original QSRG procedure fails to preserve the
SPT structure.

We now apply our SP-QSRG to the AKLT MPS. We
first apply the disentangler, and then perform the coarse-
graining step as discussed in the previous section. When
doing spectral decomposition of the double tensor (the
step (2) of Fig. 6), we find that the eigenspectrum of the
double tensor E′ has one- and three-fold degeneracies.

 

α’ γ’ α’ γ’ 

        

   

α 
      

γ 
        

    

α 
      

γ 

R 

FIG. 7: (Left): The two sites transfer matrix E′. (Right):
The two sites generalized transfer matrix G by inserting an
operator R.

This reflects the SO(3) symmetry of the AKLT state. In
order to manipulate the physical index without break-
ing this SO(3) symmetry, we need to identify the spin
representations of the physical index I by measuring the

(~S)2 and Sz quantum number. To do this, we can insert

operators R = I+ εSz and R = I+ ε(~S)2, ε being a small
number, into the transfer matrix E′ to form generalized
transfer matrices G (see Fig. 7). With this insersion, the
degeneracy pattern of E′ will be split. By comparing the
eigenvalue of E′ and G for the same eigenvector, we can
read off the quantum number.

After determining the spin representation on two sites
as a direct sum of spin 0 and spin 1, we can append
a spin 2 sector (with zero weight) and decompose the
Hilbert space into two spin 1’s, i.e., 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5.
This decomposition is realized by the following operator
Os1s2,I .

Os1s2,I =
1√
3

(|1,−1〉 − |0, 0〉+ | − 1, 1〉)〈J = 0, Jz = 0|+

1√
2

(|1, 0〉 − |0, 1〉)〈J = 1, Jz = 1|+

1√
2

(|1,−1〉 − | − 1, 1〉)〈J = 1, Jz = 0|+

1√
2

(|0,−1〉 − | − 1, 0〉)〈J = 1, Jz = −1|, (16)

where |s1, s2〉’s with s1,2 = −1, 0, 1 are the basis vectors
of two spin 1. J and Jz are the total spin quantum
numbers. I is the physical index after doing spectral
decomposition of E, and s1, s2 are new physical indices
in the integer spin representation. Here, the Os1s2,I is a
unitary operator and corresponds to the Clebsch-Gordan
coefficients. The total spin 2 sector is omitted as it has
0 weight.

We then identify the labels s1,2 as the physical indices
of the two new site tensors A′, respectively and perform
the SVD decomposition as shown in step (4) of Fig.6. In
this decomposition, we ensure that the physical spin on
the new sites also have integer-spin representation and
we have split the tensor Ã to A′’s without destroying the
SPT. We then form the new tensor A′′ to complete one
round of our SP-QSRG.

In this way, we obtain the fixed point double tensor
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Eαβ,α′β′ of AKLT state keeping χ = 2 as follows:

E11,11 = 0.524, E11,22 = 0.053,

E12,12 = 0.471, E21,21 = 0.471,

E22,11 = 0.053, E22,22 = 0.524. (17)

We also consider the dimer state, whose MPS can be
written as

A01
00 = −1, A00

01 = 1,

A11
10 = −1, A10

11 = 1. (18)

This phase also has SO(3) symmetry, and it is obvious
that the eigenvalues of E′ has the 1⊕ 3 pattern. Hence,
we can use the same splitting procedure, as mentioned
above, to the dimer state. The fixed point tensor for the
dimer state is the same as the one for the AKLT state. It
then justifies our SP-QSRG in identifying the SPT order.

The first point to note is that this fixed point tensor
seems to have a complicated form. The corresponding
fixed point state has a nonzero correlation length and is
different from the dimer state which one might have ex-
pected. This complication is due to the specific splitting
procedure 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 we are using. Short range
entanglement is not removed in an optimal way using
this splitting procedure, resulting in a fixed point state
with residue correlation and entanglement. Even so, we
are still able to see that the AKLT and the dimer states
have the same SPT order by flowing them to the same
(non-ideal) fixed point form. By knowing the SPT order
of the dimer state, we can determine the SPT order of
the AKLT state. There is a further point which needs to
be clarified. The fixed point tensors might be not unique
owing to the scale and the basis transformations of inner
and physical indices. However, we can do a normaliza-
tion to fix the scale, and remove the basis ambiguity of
the physical index by forming the double tensor. In this
particular case, basis transformations of the inner indices
do not change the double tensor as they corresponds to
spin rotation operations of the virtual spin 1/2’s and are
symmetries of the double tensor. Therefore, we obtain
a unique form of the double tensor. In more general
situations (with χ > 2), basis transformation of the in-
ner indices can change the double tensor and we need
to construct quantities invariant under such changes to
distinguish different fixed point tensors.

The points made so far apply in principle to any other
splitting procedures which may be used and can lead to
different fixed point tensors. Here we present a proce-
dure with a different operator O′ which actually has the
dimer state as the fixed point state. Ideally, one would
want to optimize the splitting procedure to get simpler
fixed point tensors. However, as the optimization proce-
dure is difficult to implement, we retain the arbitrariness
in the splitting procedure and rely on the ability of the
algorithm to flow states within the same SPT phase to
the same fixed point to identify SPT order.

We can perform the unitary operator O′ of the SP-
QSRG in another way by enlarging the Hilbert space of

the physical indices to contain 4 spin 1/2’s. The unitary
operator can be written as

O′s1s2,I =
1

2
(|01〉 − |10〉)14(|01〉 − |10〉)23〈J = 0, Jz = 0|+

1√
2
|00〉14(|01〉 − |10〉)23〈J = 1, Jz = 1|+

1

2
(|01〉+ |10〉)14(|01〉 − |10〉)23〈J = 1, Jz = 0|+

1√
2
|11〉14(|01〉 − |10〉)23〈J = 1, Jz = −1|, (19)

where spins labelled by 1 and 2 belong to s1 and the ones
by 3 and 4 belong to s2. Spins labelled by 2 and 3 always
form a singlet, and the ones by 1 and 4 form a spin 0 or
a spin 1 corresponding to the total J . s1,2 both form
integer spin representations. So the spin representation
of the physical index per site is kept with this O′ oper-
ator. Using this splitting procedure, we will obtain the
following fixed-point double tensor for the AKLT state:

E11,11 = 0.5, E12,12 = 0.5,

E21,21 = 0.5, E22,22 = 0.5. (20)

Again, this is the same as the one for the dimer state
obtained by the same SP-QSRG procedure. It is easy to
show that this fixed point tensor can be obtained from the
MPS (18), therefore the dimer state is actually the fixed
point state of this SP-QSRG procedure. Note that the
resultant double tensors in (17) and (20) are different.
This reflects the fact that different SREs are removed
during the process of QSRG. But as along as we use the
same procedure in the RG process, the same fixed point
can be reached.

To take another example, this degeneracy pattern also
could be interpreted as combining two spin 1/2 sites, i.e.,
2⊗ 2 = 1⊕ 3. If we take this interpretation and perform
the further splitting to obtain two A′ tensors. Then,
the physical index of A′ will be in spin 1/2 representa-
tion. We will obtain the the fixed point double tensor,
E11,11 = 1, which is a product state with no entangle-
ment. This is in the wrong class of projective represen-
tation. These above examples make it clear that if we
ensure the projective representation in the same class in
the QSRG process, the SPT phase will flow to nontrival
fixed point.

3. 1-dimensional toy model

In above example, we start from a MPS and flow it
to fixed point by using SP-QSRG procedure. Here, we
show you that this algorithm can also be used to study
the phase transition between different SPT phases. The
model we study is the staggered Heisenberg model on
the 1D spin 1/2 chain. It is a quantum antiferromag-
netic Heisenberg model with alternating strength in the
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nearest-neighbor-exchange couplings, and its Hamilto-
nian is

H =
∑
i

J1~σai · ~σbi + J2~σbi · ~σai+1
. (21)

Here, each site contains two spin 1/2 particles. J1 bond
(the thin one) means the interaction between two inner
particles and J2 bond (the thick one) means the interac-
tion between two nearest-neighbor sites. This model is
SO(3) invariant.

 
 

J1 J2 

a1 b1 a2 b2 a3 b3 

FIG. 8: The spin chain model on the 1D spin chain with two
different nearest-neighboring bond couplings J1 and J2 (thin
and thick, respectively). Each site (dashed ellipse) contains
two spin 1/2 particles, labeled as ai and bi.

By using the iTEBD with χ = 12, we can find the
ground states of the Hamiltonian (21), with J1 = 1 − g
and J2 = g, 0 ≤ g ≤ 1. At g = 0, the ground state
is a trivial product state of on-site spin 0’s. At g = 1,
the ground state is a dimer state and has nontrivial SPT
order. At some critical value of g, the state must go
through a phase transition. One way to detect the phase
transition is to apply our RG procedure. We find that at
g > 0.5, the ground state flows to the non-trivial fixed
point while g < 0.5 the ground state flows to a trivial
fixed point. At g = 0.5, the system is gapless, and it
is hard to describe this state with finite bond dimension
χ of MPS. Here we use the splitting procedure given in
(19).

 

X1= 

A 

A* 

X2= 

A 

A* 

FIG. 9: Quality X2/X1 obtained by taking the ratio of the
contraction value of the 1D double tensor in two different
ways.

The fixed point tensor may not have a unique form
due to the change in scale, basis transformation on the
inner / physical dimensions, etc. In order to remove the
influence of these factors, we can calculate the basis and
scale independent quantity X2/X1 to distinguish these
two fixed points. Such quantity is defined as

X1 =
∑
s,i,j

Asi,j × (Asi,j)
∗

X2 =
∑
s,i,j

Asi,i × (Asj,j)
∗ (22)

as shown in Fig. 9. With RG procedure (19), we flow
the ground states for arbitrary g to fixed points and cal-
culate X2/X1. The results are plotted in Fig. 10. As the
number of renormalization steps increases, the transition
approaches a step function.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

 

 

X 2/X 1

g

   0  r u n  o f  Q S R G
 2 0  r u n s  o f  S P - Q S R G

FIG. 10: Quality X2/X1 as a function of parameter g. The
more runs of the SP-QSRG go, the more X2/X1 approaches
a step function across phase transition.

B. Two-dimensional case

We will now generalize our SP-QSRG to 2D. We first
describe the algorithm for our SP-QSRG on the honey-
comb lattice. Then, we study a deformed 2D AKLT
model on the honeycomb lattice, and show that there
exists a possible SPT phase by calculating some order
parameters. Finally, we demonstrate the power of our
SP-QSRG by applying it to this AKLT phase and iden-
tify the SPT order.

The symmetry protected version of the 2D QSRG
scheme contains the same steps as that shown in Fig.
2. The key difference is to preserve symmetry in the
merging and splitting procedure. As for the 1D case, the
SP-QSRG in 2D contains two parts: disentangling (see
Fig. 2) and coarse-graining (see Fig. 3). In the disen-
tangling step, we should be careful about the projective
representations of the physical indices when splitting the
tensor T̃ in Fig. 11 before re-merging. We may need to
enlarge the Hilbert space for the physical indices of the
tensor T̃ to form the tensor Θ before splitting and ensure
that j1 and j2 are in the same class of projective repre-
sentation as the physical indices on the original sites.
After splitting, we merge the three new tensors around
a vertex as shown in Fig. 3. This completes one round
of the SP-QSRG for the weak SPT phases. Moreover, in
2D QSRG, we need to truncate the minor singular values
in step (3) of Fig.2 to make the numerical computation
viable. Of course, the truncation should be performed in
accordance with the degeneracy patterns of the singular
values to ensure the symmetry property of the SPT.

Again, for SO(3) on-site symmetry the integer spins
and half-integer spins belong to different classes of pro-
jective representations. Therefore, we should assure that
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S 
α 

γ β 

δ α 

γ β 

δ 

j2 
j1 

        

 ̃ Θ 

FIG. 11: The SP-QSRG procedure on honeycomb lattice. En-
larging the Hilbert space for the physical indices of the tensor
T̃ to ensure the physical indices j1 and j2 are in the same
class of projective representation as the original site physical
index.

the physical indices of each site tensor in the process of
QSRG are in the same class of the spin representation
to keep the SPT order. For 1D SPT states with SO(3)
symmetry, physical indices on each site always have to be
integer spins. However for 2D SPT states with SO(3) and
translation symmetry, physical states per each site can be
either integer spins or half integer spins, depending on
the lattice. The key to preserving the weak SPT order in
the 2D QSRG scheme is to keep the spin representation
class of the physical index on each site. Note that we are
keeping only block translation symmetry (with odd block
size) in the RG procedure which is sufficient to preserve
the weak SPT order.

1. 2-dimensional AKLT phase as the example

To demonstrate the power of our SP-QSRG, we con-
sider a 2D model with weak SPT order. The simplest
one is the 2D AKLT model [18] on the honeycomb lat-
tice, which has SO(3) on-site symmetry and translation
symmetry. Its ground state – the AKLT state has a sim-
ple TPS representation, see [40, 41] for example.

To be more general, we consider the simple variation
of the AKLT model with following Hamiltonian for spin
3/2 per site on the honeycomb lattice,

H =
∑
<ij>

[J1 ~Si · ~Sj + J2(~Si · ~Sj)2 + J3(~Si · ~Sj)3] (23)

Obviously, this model has SO(3) on-site symmetry and
translation symmetry. In this section, we use iTEBD
method to find the ground states of Hamiltonian (23)
and calculate the expectation values of Mz

s and Mz. We
identify a region where both order parameters are zero
which could potentially be an SPT phase. Then, using
SP-QSRG, we flow the ground states to fixed points and
identify the order. This model corresponds to the AKLT
one if J1 = 1, J2 = 116/243 and J3 = 16/243. In such a
case, its ground state has a closed form in terms of TPS
[40] with each on-site spin being decomposed into three
spin 1/2 virtual particles, as shown in Fig. 1.

However, for generic values of J1 and J2 there is no
known analytic ground state solution of Hamiltonian
(23). Instead, we solve this model numerically by using
the method of simple update [42] for the ground state.

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0  
A K L T  p h a s e

F M  p h a s e N e e l  p h s eJ 2  

 

J 3

FIG. 12: The phase diagram of the deformed AKLT-like
model (23) by tuning J2 and J3 with J1 = 1 fixed. The labels
Neel, FM and AKLT stand for the Neel, the ferromagnetic
and the AKLT phases, respectively.

This method is to numerically evolve the ansatz state in
imaginary time with the help of Trotter decomposition
when updating the TPS by each 2-site term of (23). We
then apply the method of Tensor RG [25] to calculate
the order parameters, from which we deduce the general
structure of the phase diagram.
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J 2 = 0 . 5
 M Z

 M Z
s

  

 

J 3

FIG. 13: A typical phase diagram for the magnetization Mz

and the staggered magnetization Mz
s by tuning J3 with J1 = 1

and J2 = 0.5 fixed. We fix the bond dimension χ = 4 and
Dcut = 24 in this numerical calculation.

After a tedious procedure of scanning the parameter
space of the Hamiltonian (23) for the magnetization Mz

and the staggered magnetization Mz
s , we finally obtain

its total phase diagram as shown in Fig. 12. If Mz
s = 0

and Mz 6= 0 we then identify it as in the ferromagnetic
(FM) phase. On the other hand, if Mz

s 6= 0 but Mz = 0,
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we identify it as in the Neel phase. In a region where
both order parameters are non-zero, we cannot identify
the phase and the system is probably gapless. For more
discussions on numerical results, see Appendix B.

From our numerical results, we find there is a regime
in the parameter phase in which neither Mz

s nor Mz is
nonzero. For example Fig.13 shows the Mz and Mz

s value
with J1 = 1, J2 = 0.5 and J3 = −1.0 to 1.0 in which the
order parameters goes to zero near J3 = 0. On the other
hand, as the system does not break the on-site SO(3)
and translational symmetry, it could be in a weak SPT
phase. If this is true, we will call it the AKLT phase.
Now, we will apply our SP-QSRG to give the supporting
evidence. It turns out that this is a SPT phase.

Our examination based on QSRG procedure goes as
follows. First, we apply the usual QSRG to the ground
state of (23), we find that it flows to the trivial ground
state, such as T111

111 = 1. This implies that none of the
phases in the phase diagram Fig. 12 has the intrinsic
topological order.

Then, we apply the SP-QSRG to the 2D AKLT model
(23). We find the ground state by using iTEBD method
with bond dimension χ = 2 to study the Hamiltonian
(23). After performing the spectral decomposition for
the tensor T in Fig. 2, we see the degeneracy pattern of
eigenvalues (with 1, 3, 5, 7 etc fold degeneracy). There-
fore, the wavefunction has SO(3) symmetry and could
possibly be a weak SPT phase with SO(3) and transla-
tional symmetry.

Since the original physical index per site is in the half-
integer representation, i.e., spin 3/2, so we should require
the physical indices of the tensors on each site in the in-
termediate steps to be also in the half-integer representa-
tion to ensure the SPT. The simplest way is to interpret
the physical index of T̃ as comprised of two spin 3/2.
Thus, we can understand the degeneracy pattern of the
singular values as follows: 4⊗ 4 = 1⊕ 3⊕ 5⊕ 7. Accord-
ingly, we should enlarge the Hilbert space of the physical
index of the tensor T̃ and split it by the rule of the mea-
sured quantum number in such a decomposition.

In order to see the invariant structure of the fixed point
up to change of scale and basis, we calculate some invari-
ant quantity. We define a quantity that is given by the
ratio of X2 and X1 (see Fig. 14), as follows:

X1 =
∑

s,α,β,γ,δ

T sα,β,γ,δT
∗s
α,β,γ,δ (24)

X2 =
∑

s,α,β,γ,δ

T sα,β,α,βT
∗s
γ,δ,γ,δ

where s is the physical index and α, β, γ, δ are bond in-
dices. It is simple to verity that this quantity is invari-
ant under the change in scale and the basis transforma-
tion. In the Fig 14, we show the tensor representation
on square lattice. We can merge two neighbor sites on
honeycomb lattice to form a new tensor representation
on square lattice. It is easy to calculate this quantity on
honeycomb lattice. For 2D AKLT state (exact TPS), we

have X2/X1 = 0.28.

 

X2= X1= 

T 

T* 

T 

T* 

FIG. 14: The quantity X2/X1 obtained by taking the ratio
of the contraction value of the double tensor in two different
ways. X2/X1 is invariant under changing scale and gauge
transformation. It can be used to distinguish different fixed-
point tensors.

We find the ground state by using iTEBD method with
bond dimension χ = 2 to study the Hamiltonian (23) and
calculate the quantity X2/X1 in the process of QSRG.
The results are shown in Fig. 15 by tuning J3 with J1 =
1 and J2 = 0.5 fixed, from which we can see that all
points in the nonsymmetry breaking region belong to the
same phase. This phase diagram can match the Fig. 13
with order parameters. Before doing QSRG, the X2/X1

as functions of J3 seems to be a smooth function (see
squares in Fig. 15). If we don’t preserve symmetry, all of
state will flow to trivial state, X2/X1 = 1 (see triangles
in Fig. 15). Then, preserving SO(3) symmetry, for the
AKLT phase region, X2/X1 tends to 0.28 (see circles in
Fig. 15), and they flow to the same fixed point. This is
true not only for parameters drawn in Fig. 15, but for
the whole AKLT phase region as well. In other regions,
symmetry is broken and we cannot apply the SP-QSRG
algorithm.
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FIG. 15: The quantity X2/X1 for tensors under the renormal-
ization flow by tuning J3 with J1 and J2 = 0.5 with (circle)
and without(triangle) preserving symmetry. The square is the
X2/X1 of ground state without doing QSRG.

In order to show that this is the SPT fixed point, we
apply the SP-QSRG procedure to the 2D dimer state,
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represented by the Ta and Tb sublattice tensors

T 000
a,000 = 1, T 111

a,111 = −1 (25)

T 011
a,011 = 1, T 110

a,110 = 1, T 101
a,101 = 1

T 001
a,001 = −1, T 010

a,010 = −1, T 100
a,100 = −1.

T 111
b,000 = 1, T 000

b,111 = 1 (26)

T 100
b,011 = 1, T 001

b,110 = 1, T 010
b,101 = 1

T 110
b,001 = 1, T 101

b,010 = 1, T 011
b,100 = 1.

This state is the valence bond solid with each pair of
“partons” on the neighboring sites forming singlet state.
In the language of TPS, the projection operator is the
identity. We find that it flows to the same fixed point
with the same X2/X1 value and. This then demonstrates
the power of our SP-QSRG and also justifies the SPT of
the AKLT phase.

IV. CONCLUSION

The experimental search of exotic topological phases
has attracted great attention. To motivate and assist the
search, it is important to predict theoretically possible
models which could have interesting topological proper-
ties. As most of the exactly solvable higher dimensional
models with (symmetry protected) topologically ordered
ground states involve non-realistic interactions, numer-
ical simulation is usually necessary to find the possible
topologically ordered phases in more realistic models.

In this paper we have aimed at such a goal in de-
vising a numerical algorithm based on the matrix and
tensor product state representation of the ground states.
Our algorithm of Symmetry Protected Quantum State
Renormalization Group transformation can flow a ground
state wave function to its fixed-point form in the same
SPT phase. The fixed-point form of the MPS and TPS
is usually simple and universal due to the removal of
irrelevant short range entanglements so that it can be
used to identify the SPT. This algorithm is the modi-
fied version of the original quantum state renormaliza-
tion group algorithm[32, 37], which enforces the symme-
try constraints protecting the SPT orders. The key to the
success of the algorithm is to make sure that the symme-
try representation of degrees of freedom per site remains
in the same class of projective representation during the
RG process.

We have considered the 1D and 2D AKLT phases as ex-
amples in testing our SP-QSRG algorithm. These models
have on-site SO(3) symmetry so that only integer spin
degrees of freedom can be added or removed when doing
the RG transformation. Our numerical implementation
of the algorithm on these states yield satisfying results by
finding that they all flow the same fixed-point states as
the dimer states do. This confirms that the AKLT and

the dimer states are in the same SPT class for the 1D
and 2D cases. Moreover, we are able to see a clear phase
transition between trivial and nontrivial SPT phases as
they flow to different fixed point tensors.

We note that the splitting procedure in the RG algo-
rithm involves certain arbitrariness and is not unique.
Different procedure corresponds to different ways of re-
moving local entanglement and leads to different forms
of fixed point tensor. It is desirable to fix this ambiguity
and find an efficient way to determine the splitting pro-
cedure which removes local entanglment in an optimal
way.

Finally, future directions involve exploring similar al-
gorithm for the identification of SPT order with spatial
symmetry (e.g. reflection in 1D), ‘strong’ SPT order
(without translation symmetry protection) in two and
higher dimensions, and symmetry enriched topological
order. Also it would be interesting to apply these algo-
rithms to realistic models in search of such exotic topo-
logical phenomena.
Note added: After finishing the first version of our

paper, we learned of the work “Symmetry Protected En-
tanglement Renormalization” done by Singh and Vidal
[47] considering the same issue as ours but in the context
of MERA.
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Appendix A: Projective Representation

Matrices u(g) form a projective representation of sym-
metry group G if

u(g1)u(g2) = ω(g1, g2)u(g1g2), g1, g2 ∈ G. (A1)

Here ω(g1, g2)’s are U(1) phase factors, which is called
the factor system of the projective representation. The
factor system satisfies

ω(g2, g3)ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3), (A2)

for all g1, g2, g3 ∈ G. If ω(g1, g2) = 1, this reduces to the
usual linear representation of G.

A different choice of pre-factor for the representation
matrices u′(g) = β(g)u(g) will lead to a different factor
system ω′(g1, g2):

ω′(g1, g2) =
β(g1g2)

β(g1)β(g2)
ω(g1, g2). (A3)
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We regard u′(g) and u(g) that differ only by a pre-factor
as equivalent projective representations and the corre-
sponding factor systems ω′(g1, g2) and ω(g1, g2) as be-
longing to the same class ω.

Suppose that we have one projective representation
u1(g) with factor system ω1(g1, g2) of class ω1 and an-
other u2(g) with factor system ω2(g1, g2) of class ω2, ob-
viously u1(g)⊗u2(g) is a projective presentation with fac-
tor group ω1(g1, g2)ω2(g1, g2). The corresponding class ω
can be written as a sum ω1 + ω2. Under such an addi-
tion rule, the equivalence classes of factor systems form
an Abelian group, which is called the second cohomology
group of G and denoted as H2[G,U(1)]. The identity
element 1 ∈ H2[G,U(1)] is the class that corresponds to
the linear representation of the group.

Appendix B: Numerical results for solving
2-dimensional AKLT-like model

We adopt the method of simple update [42] to solve
the ground state of (23) numerically. Then, we apply
the method of TRG [25] to evaluate the relevant order
parameters and delineate the phase diagrams as shown
in Fig. 13 and 17. The total phase diagram of this model
as shown in Fig. 12.

We assume the translational invariance for the TPS
ansatz for the ground state of (23). Using the simple
update method we can solve the TPS numerically. One
should caution that the unit cell used in the simple up-
date is a honeycomb, which is different from the acyclic
tree of coordination number equal to 3. So, when per-
forming each step of the simple update, we need to up-
date the six kinds of tensors and nine bonds as shown in
Fig. 16.
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FIG. 16: Diagrammatic representation of the TPS on the
honeycomb lattice. The tensors T (i), with i = 1, 2, .., 6 on
the site labeled by i has three bond indices and one physical
index.

Based on the numerical solution from simple update
we can further use TRG method to evaluate the expec-
tation value of the magnetization denoted by Mz and
the staggered magnetization Mz

s . They are the order
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FIG. 17: A typical phase diagram for the magnetization Mz

and the staggered magnetization Mz
s by tuning J3 with J1 = 1

and J2 = −0.8 fixed. We fix the bond dimension χ = 4 and
Dcut = 24 in this numerical calculation.The left one is with-
out annealing but the right one is with annealing by tuning
a small magnetic field in the z-direction when evaluating the
ground state. This annealing kill the sudden jump of Mz. We
also calculate the energy per site for J3 = −0.2. The ener-
gies with and without the annealing are −7.303 and −7.150,
respectively.
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FIG. 18: The spin-spin correlation function as a function of
r = |i−j|. In this numerical calculation, χ = 4 and Dcut = 24
are used.

parameters for the ferromagnetic and the Neel phases,
respectively. In our numerical calculation, we consider
the bond dimension up to χ = 5 and keep Dcut ≥ χ2

to ensure the accuracy of the TRG calculation. A typ-
ical numerical result for Mz and Mz

s are shown in Fig.
13 with J1 = 1 and J2 = 0.5, which shows a quantum
phase transition around J3 = 0 from the Néel phase to
the AKLT phase as we decrease J3. Note that the dif-
ference between largest two singular values also indicates
the quantum phase transition. If we further decrease J3,
we will reach the ferromagnetic phase. We also plot an-
other numerical results with J2 = −0.8 in Fig. 17. It
shows that the Néel order will suddenly drop to zero and
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remain zero after that. On the other hand, the Mz is
zero but suddenly start to grow. However, if anneal the
result by tuning small magnetic field, then it shows that
Mz grows gradually. This indicates there are only the
ferromagnetic and the Néel phases in this regime.

We also calculate the spin-spin correlation function
at the AKLT point in the Fig 18. It shows the
exponentially-decay behavior as expected for a gapped
system like the AKLT model.

Appendix C: Fixed point tensor for 2-dimensional
AKLT phae

In this Appendix, we write down the fixed point tensor
of states in 2D AKLT phase with bond dimension χ = 2.

In general, the explicit form of this tensor will depend
upon the choice of the bases. Fortunately, the 2D AKLT
phase and dimer phase have closed-form tensor represen-
tation with χ = 2. By this way of performing SP-QSRG

on the AKLT state, we finally arrive the following fixed-
point double tensor:

T111,111 = 0.05;

T112,112 = 0.044; T121,121 = 0.044; T211,211 = 0.044;

T221,221 = 0.036; T212,212 = 0.036; T122,122 = 0.036;

T222,222 = 0.05. (C1)

The reasons for unique fixed point tensor are exactly
similar in the 1D and 2D cases. We checked that this is
also the fixed point double tensor of the 2D dimer state.

Besides, we also apply the SP-QSRG to the other
numerical ground states with χ = 2 in the AKLT
phases,such as J2 = 116/243,J3 = 16./243 + 0.01 and
J2 = 0.8,J3 = 0.15, they all flow to the same fixed point
state given by (C1). This then demonstrates the power
of our SP-QSRG and also justifies the SPT of the AKLT
phase.
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