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We reformulate the information causality in a more general framework by adopting the results in
signal propagation and computation in a noisy circuit. In our framework, the information causality
leads to a broad class of generalized Tsirelson inequalities, and a no-go theorem for the reliable
nonlocal computation of complicated functions. The former will put the information causality
under the scrutiny experimentally, and the latter implies a negative result in reliably retrieving the
information out of black hole by the nonlocal computation with physically realizable resources.

Introduction. Physical principle is important guidance
in formulating a physical theory, such as the uncertainty
principle for quantum mechanics and equivalence princi-
ple for general relativity. A more fundamental principle
is the space-time causality. In the context of quantum
information it can be formulated as the no-signaling prin-
ciple, which puts a limitation on the possible extent of
non-locality without violating space-time causality. De-
spite of its non-local nature, quantum mechanics is a no-
signaling theory. However, there is unexpected richness
embarrassment, that is, exist a broad class of no-signaling
theories other than quantum mechanics. These theories
can violate Bell-type inequalities more than Tsirelson’s
bound [3, 4], i.e., they are more non-local than quantum
mechanics could do [1, 2, 5–7]. Clearly, no-signaling is
not enough as a principle to single out physical theories
such as quantum mechanics, then what shall be [8, 9]?

Recently information causality, which is more subtle
than no-signaling and can single out quantum mechan-
ics as a physical theory, is proposed as a new physical
principle [9]. It states that in a bipartite code protocol
prepared with any physically local or non-local resources,
the accessible information gain cannot exceed the amount
of classical communication. In [9, 10] the information
causality is demonstrated by a generic task similar to
random access codes (RAC) and oblivious transfer. In
this task, a database of k bits ~a := (a0, a1, · · · , ak−1),
where ai is the random variable ∀i, only known by Alice
is prepared, and the distant party Bob is given a ran-
dom variable b ∈ (0, · · · , k − 1) along with a bit α send
by Alice. With the bit α and the pre-shared correlation
with Alice, Bob’s task is to optimally guess the bit ab.
Then, according to information causality the quantity I
is upper bounded

I =
k−1∑
i=0

I(ai;β|b = i) ≤ 1 . (1)

Here I(ai;β|b = i) is the Shannon mutual information
between ai and Bob’s guessing bit β if Bob is asked to
access ai by the condition b = i. Classically, I can reach
1 once α = ai and I(ai; aj) = δij ( i.e., the Kronecker
delta). To achieve the above task, the non-local corre-
lations are initially distributed between Alice and Bob.

However, information causality states that the allowed
non-locality by a physical theory cannot increase Bob’s
information gain. In this Letter, a direct spin-off of in-
formation causality is shown to generate a broad class of
generalized multi-setting Tsirelson-type inequalities. As
a result, we can then put the information causality as a
physical principle under scrutiny by experimentally ver-
ifying or falsifying the generalized Tsirelson’s bounds.

In this Letter, the strategy of reformulating informa-
tion causality is as follows. Firstly the physically achiev-
able non-local correlation is simulated by the no-signaling
box (NS-box). Specifically the NS-box can be formulated
as a noisy distributed gate exploited for nonlocal compu-
tation. We can embed this gate in a setting of RAC. In
a way, Alice and Bob execute the RAC protocol using a
noisy circuit. The noise of the NS-box is intrinsic and
systematic inherited from the underlying physics theory
such as quantum mechanics. Then the failure probabil-
ities of Bob’s task is related to the noise of the NS-box,
and the quantity I(ai;β|b = i). In this framework, the
signal decay theorem in [12, 13] for a noisy circuit is ex-
ploited to yield a tight bound for I(ai;β|b = i). Finally
we can apply information causality to yield the general-
ized Tsirelson-type inequalities.

On the other hand, if there is no classical communi-
cation, RAC can be regarded as nonlocal computation,
since distant Alice and Bob compute a general Boolean
function without knowing the other’s input [14]. From
this aspect, information causality is closely connected
with a nonlocal version of a fundamental question on
noisy computation, which is raised by von Neumann [15].
Could the physical circuit with the systematic error in-
trinsically perform the reliable noisy nonlocal computa-
tion of any Boolean function? By reliable noisy compu-
tation, it means that the failure probability of the com-
putation is less than 1/2 without invoking an infinitely
large circuit. Dictated by the information causality, we
will see that the answer is negative for the RAC circuit.

Tsirelson-type inequalities. We start by reformulat-
ing the NS-box as a noisy distributed gate for nonlo-
cal computation. The NS-box as a non-local box is pre-
shared between two distant Alice and Bob. Locally, Al-
ice and Bob input k-bit strings ~x := (x0, · · · , xk−1) and
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~y := (y0, · · · , yk−1), respectively, into the half of the gate,
which then outputs bits A~x and B~y, respectively. The
general NS-box is characterized by the conditional joint
probabilities Pr [A~x, B~y |~x, ~y], which must fulfill the no-
signaling conditions. Note that the length of the strings
and the dimension of input space can be chosen by design.
In this letter, our NS-box is further characterized by the
success probabilities Pr [A~x +B~y = f(~x, ~y) |~x, ~y] of com-
puting a nonlocal task function, f(~x, ~y). Such task is a
nonlocal one if f(~x, ~y) cannot be decomposed as “single-
vector” functions of either ~x or ~y.

The RAC protocol for our purpose is not unique and
will depend on the chosen task function f(~x, ~y) and on
how we encode Alice’s database ~a and Bob’s given ran-
dom variable b into ~x and ~y, respectively. Here we give an
example for illustration by choosing f(~x, ~y) = ~x ·~y. First,
Alice and Bob perform the encoding so that xi = a0 +ai,
and yi = δi,b for i = 0, · · · , k − 1. Note that x0 = 0.
Second, given the communication bit α = a0 + A~x send
by Alice, Bob outputs the guess β = α+B~y. As a result,
Bob can then decode Alice’s bit ab successfully whenever
A~x +B~y = ~x · ~y is true. According to quantum mechan-
ics, the above can be physically realized as follows. For
arbitrary bit strings ~x and ~y, there are the correspond-
ing measurements M̂~x and b̂, of which the outcomes are
A~x and B~y, respectively. There are then 2k−1 and k lo-
cal measurement settings for Alice and Bob, respectively.
We will implicitly use this protocol for later discussions.

For the above protocol, the success probability of Bob’s
task in decoding Alice’s bit ab is related to the one for
noisy computation as following

Pr[β = ab|b ] =
1

dim{~x}
∑
{~x}

Pr [A~x +B~y = f(~x, ~y)|~x, ~y ] ,

(2)
where dim{~x} is the dimension of the in-
put space spanned by the encoding {~x}. De-
fine the correlation functions to C~x,~y :=∑
A~x=0,1

∑
B~y=0,1(−1)A~x+B~y Pr [A~x, B~y |~x, ~y ]. Then

we can find

ξ~y =
1

dim{~x}
∑
{~x}

(−1)f(~x,~y)C~x,~y. (3)

where the coding noise parameter is defined to be ξ~y :=
2 Pr [β = ab |b ]− 1. The sub-index ~y of ξ~y is understood
to be equivalent to Bob’s given parameter b via encoding.

One of the main results in this paper is that the gen-
eralized Tsirelson’s bound should be

|
∑
{~y}

ξ~y | =
1

dim{~x}
|
∑
{~x},{~y}

(−1)f(~x,~y)C~x,~y | ≤
√
k . (4)

For k = 2, (4) is the Tsirelson’s bound |C0,0+C0,1+C1,0−
C0,0| ≤ 2

√
2 [3]. We have verified (4) to be the maximal

violation of nonlocality in quantum mecahnics by using

the semidefinite programing for general k [11]. This is
why we call (4) as the generalized Tsirelson’s bound.

Indeed, later we will see that the information causality
will yield (4). This implies that the information causality
can be tested by experimentally verifying or falsifying
(4) via measuring the correlation functions of a quantum
system.

We now turn to the connection between I(ai, β|b)
and ξ~y. Once b is given, Bob can immediately learn
B~y, which, according to the no-signaling condition,
will not affect I(ai, β|b). In other words, I(ai, β|b) =
I(ai, β|b, B~y). Then, we can use the following signal de-
cay theorem on signal propagation proven by Evans and
Schulman in [12, 13].

Theorem 1: Let X, Y and Z be Boolean random vari-
ables. Consider a cascade of two communication chan-
nels: X ↪→ Y ↪→ Z. ThereX and Y are the input and the
output of the first channel, respectively. Let Y in turn
be the input of a cascading binary symmetric channel Cε
with the noise parameter ε, i.e.,

Cε =
(

1
2 (1 + ε) 1

2 (1− ε)
1
2 (1− ε) 1

2 (1 + ε)

)
.

Let Z be the output of Cε, (That is, Z = Y with the
bit-flipping probability 1

2 (1− ε))

I(X;Z)
I(X;Y )

≤ ε2. (5)

A special case is for the first channel to be noiseless or
trivial, i.e., I(X;Y = X) = 1 such that I(X;Z) ≤ ε2.
Note also that no matter what the properties of the
second channel, there is a data processing inequality
I(X;Z) ≤ I(X;Y ).

We apply this theorem to our RAC protocol as follows.
As Alice’s inputs a0, a1, · · · , ak−1 are random variables
and hence independent of each other, so that all the aj ’s
with j 6= i can be fixed without disturbing I(ai ;β|b). Let
X = ai, Y = a0 + f(~x, ~y), and Z = β. Here Y is Bob’s
ideal answer and hence I(X;Y ) = 1. The coding noise ε
for our protocol is ξ~y, then according to the Theorem 1,
we have

I(ai ;β|b = i) ≤ ξ2~y . (6)

Note that the upper bound of I(ai ;β|b = i) is tight,
i.e., the equality in (6) holds if Pr[a0 + f(~x, ~y)|ai = 0] =
Pr[a0 + f(~x, ~y)|ai = 1] = 1/2.

Therefore, the information causality in Eq. (1) yields

I ≤
∑
{~y}

ξ2~y ≤ 1 . (7)

In [9, 10], similar inequalities are derived to avoid the di-
vergence of I, and then justifies the information causal-
ity. However, such trouble does not exist in our refor-
mulation by the tight bound of the Theorem 1. By
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the help of (3) the second inequality in (7) becomes a
quadratic Tsirelson-type inequality for the correlation
function C~x,~y. Moreover, using the Cauchy-Schwarz in-
equality, we can obtain |

∑
{~y} ξ~y| ≤

√
k, that results in

the linear Tsirelson inequality of Eq. (4).
Noisy nonlocal computation. In the previous discus-

sion we only consider the information causality using a
single nonlocal NS-box as the coding protocol. Instead,
we can treat the NS-box as a gate for doing the nonlocal
noisy computation, i.e., computing the function f(~x, ~y)
with the answer obtained by combing Alice’s and Bob’s
outputs, namely, A~x and B~y. The computation is suc-
cessful if A~x + B~y = f(~x, ~y) so that the computational
noise parameter is defined as

ε~x,~y := 2 Pr[A~x +B~y = f(~x, ~y)|~x, ~y ]− 1 . (8)

Unlike using the same gate for RAC, no classical com-
munication between Alice and Bob is required to perform
the nonlocal computation. On the other hand, from (8)
and (3) the computational noise of the gate is related to
its coding noise by

ξ~y =
1

dim{~x}
∑
{~x}

ε~x,~y . (9)

Since the coding noise is constrained by the informa-
tion causality, so is the computational noise based on
the above relation.

Furthermore, we may combine the NS-box gates to
form more complicated circuit without worrying about
the coding protocol. Then the total task function for the
whole circuit will be a complicated function, i.e., com-
posite of task functions of all NS-boxes. We then may
try to answer the following fundamental question: could
a noiseless (nonlocal) computation be simulated using the
noisy nonlocal physical resource?

To be specific, we consider the so-called (n, k, l)-circuit
G by cascading layers of the noisy gates into a circuit in
the form of a directed acyclic tree, see Fig 1. On the
top of G, there are n inputs to the NS-boxes, the leaves;
at the bottom there is only one NS-box, the root. The
longest path from leaves to the root is called the depth of
the circuit, denoted by l. The maximal input number of
a gate in G is k. Note that, In [9] G comprised of k = 2
gates is exploited to compress n-bit ~x into ont bit A~x.
However, there is no restriction on the task function for
each NS-box, as long as the final circuit is a consistent
acyclic tree diagram.

We then use the circuit G to perform the follow-
ing nonlocal computation. Alice’s n-bit database ~a :=
(a0, a1, · · · , an−1) is given to the leaves of G, and a con-
ditional input b ∈ {0, 1, · · · , n−1} is given to the distant
Bob. The previous encoding ~a→ −→x and b→ ~y for RAC
protocol is similarly exploited here. Encode Alice’s out-
put properly and then feed into the NS-box at the next
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FIG. 1: RAC protocol for a (n, k, l)-circuit. Each vertex of
the circuit corresponds to a NS-box, with its details shown in
the big ellipses.

layer with again Bob’s conditional input. Perform the
same procedure recursively until reaching the root, with
its output as the answer to the total task function at the
root.

Since Bob’s input is conditional, we can then model
the gate as a local one which computes the function
of Alice’s inputs only. Furthermore, once ~y and B~y is
fixed after Bob’s local operations, and ~x is known to Al-
ice, the computation succeeds if A~x = f(~x, ~y) + B~y (or
B~y = f(~x, ~y) + A~x from Bob’s point of view). Equiva-
lently, you may think that Bob’s decoding (Alice’s encod-
ing) is noise free, and blame the computational noise to
Alice’s encoding (Bob’s decoding) error due to the physi-
cal limitation of the underlying theory. This makes easier
to understand the above procedure of noisy computation
for the circuit G. Now we can consider the information
flow of G.

Theorem 2: For the noisy local circuit G with an
arbitrary depth, the root outputs one-bit information at
most.

Note that the circuit G can perform RAC if the ap-
propriate protocol is given at each layer, and the 1-bit
communication is allowed for the whole process. Then,
the above theorem implies that the information causality
holds true for the circuit G.

To prove the theorem, we shall show that the mutual
information between leaves and root of G is bounded by
one. This can be done by mathematical induction as fol-
lows. Start with the circuit of depth one, which is nothing
but a single NS-box, so the information causality ensures
the bound. We then assume the the bound holds true
for a circuit of depth `. According to information causal-
ity and sub-additivity, the mutual information I

(m)
` be-

tween leaves and root obeys I(m)
` ≤

∑
im
I(Xim ;Rm) =
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im
I(Xim ;Rm|Bob’s knowledge) ≤ 1, where the index

m labels a collection of circuits of depth ` with root Rm,
and the index im labels the inputs of the m-th circuit.
Now, we construct a circuit of depth `+ 1 by connecting
all the roots Rm’s to a single NS-box whose output is
R, then the mutual information I`+1 between leaves and
root R of the final circuit should obey the sub-additivity,
i.e., I`+1 ≤

∑
m

∑
im
I(Xim ;R). From the Theorem 1 we

have I(Xim ;R) ≤ ξ2mI(Xim ;Rm) since we have a cascade
of two channels: Xim ↪→ Rm ↪→ R where the second
channel is the binary symmetric one with the noise ξm.
Using this, we have I`+1 ≤

∑
m ξ

2
m

∑
im
I(Xim ;Rm) ≤∑

m ξ
2
m ≤ 1. Q.E.D.

For simplicity, now we only consider the case that the
computational noise is isotropic to ~x, denoted by ε~y.
From (9) we have ε~y = ξ~y and the information causality
requires

∑
{~y} ε

2
~y ≤ 1. Then, we would like to know if the

reliable computation is also constrained by the informa-
tion causality or not. To check this, we invoke the main
theorem on the conditions for the reliable noisy compu-
tation in [12, 13] by Evans and Schulman. It states that a
circuit of complete k-ary tree with depth l ( i.e., n = kl)
can perform δ-reliable noisy computation only

• (i) if
∑
{~y} ε

2
~y > 1 then ` ≥ log(n∆)/ log(

∑
{~y} ε

2
~y) ,

• (ii) if
∑
{~y} ε

2
~y ≤ 1 then n ≤ 1/∆,

where ∆ := 1 + δ log δ+ (1− δ) log(1− δ). The computa-
tion is called δ-reliable if the root outputs correctly with
probability 1−δ (with δ < 1/2). This theorem provides a
more strict conditions than the original proposal by Von
Neumann [15, 16].

By definition, smaller ε~y means larger noise, and the
condition (ii) is for the cases with larger noise so that
only functions with smaller number of inputs can be re-
liably computed. Immediately, we see that information
causality implies a large computational noise for the RAC
circuit so that only condition (ii) for reliable noisy com-
putation can be possibly fulfilled. As a result, Alice’ out-
put asymptotically becomes random since ∆ → 0 and
hence δ → 1

2 as n→∞.
In summary, our results imply that the information

causality prevents any physically realizable (n, k, l)-circuit
from achieving the reliable computations of too compli-
cated functions, i.e., with either too many inputs or
lengthy steps needed.

Discussion. If the result holds true for more general
circuits, it could be quite profound, for example for black
hole physics. Consider Alice and Bob share a nonlocal
machine made by the circuit G discussed above. Alice
then enters a black hole, and Bob remains outside of
it. Then, we may ask if Bob can reliably retrieve Al-
ice’s information inside the black hole by performing the
nonlocal computation. Our result implies the answer to
be negative if the information causality is obeyed. This

is indeed the case for the machine with nonlocal quan-
tum correlation as discussed in [17, 18]. This implies a
deep relation between information causality and the fast
scrambling of quantum informations in a random sys-
tems.

Moreover, as our Universe can be thought as a huge
computer made of physical resources, and performs the
computation as the Universe evolves. Therefore, the in-
formation causality implies that the Universe cannot per-
form arbitrarily reliable computation due to the intrinsic
systematic error, which then generates the entropy as the
computation goes. This then provides a computational
perspective of the second law of thermodynamics.
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National Science Council of the Republic of China un-
der Contract No. NSC.99-2112-M-033-007-MY3 and 97-
2112-M-003-003-MY3. This work is partially supported
by the Physics Division of the National Center for The-
oretical Sciences.

SUPPLEMENTAL

We now use the semidefinite programming (SDP) to
check the Tsirelson-like bound mentioned in the main
text. SDP is the problem of optimizing a linear func-
tion subjected to certain conditions associated with a
symmetric positive semidefinite (SPSD) matrix X, i.e.,
vTXv ≥ 0, for v ∈ Rn, and is denoted by X � 0. It
can be formulated as the standard primal problem as fol-
lows. Given the n × n symmetric matrices C and Dq’s
with q = 1, · · · ,m, we like to optimize the n × n SPSD
matrix X � 0 such that we can achieve the following:

minimize Trace(CTX) (10a)

subject to Trace(DT
q X) = bq, q = 1, · · · ,m .

(10b)

Corresponding to the above primal problem, we have
a dual problem as following:

maximize

m∑
q=1

yqbq (11a)

s.t. S = C −
m∑
q=1

yqDq � 0. (11b)

This corresponds to optimize over the Lagrangian multi-
pliers for the constraints (10b).

If the feasible solutions for the primal problem and the
dual problem attain their minimal and maximal values
denoted as p′ and d′ respectively, then p′ ≥ d′, which
is called the duality gap. This implies that the optimal
solution of primal problem is bounded by dual problem.
This then leads to the following: Both the primal and
the dual problems attain their optimal solutions as the
duality gap closes, i.e., d′ = p′.
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We will now formulate the finding of the generalized
Tsirelson’s bound in the form of the primal problem,
and then acquire the bound by solving the the primal
and the dual problems optimally as described above. We
will consider the following two cases based on different
RAC protocol used in the main text with different multi-
settings. In this protocol Alice has a database of k bits
(a0, a1, , , ak−1)(ai ∈ {0, 1}), and the distant Bob is given
a random variable b ∈ (0, ...k − 1) and a bit α send by
Alice. Bob’s task is to guess ab faithfully through α.

case(a) In this case, Alice’s input ~x is a bit-string
with k−1 bits given by (a0+a1, a0+a1..., a0+ak−1), and
Bob’s correlated input ~y is also a bit-string with k − 1
bits given by yi = δi,b for b 6= 0, and ~y = ~0 for b = 0.
In this case, the Tsirelson-like inequality derived from
information causality following the procedure in the main
text is

|
∑
{~x},{~y}

(−1)
−→x ·−→y C~x,~y| ≤ 2k−1

√
k . (12)

case(b) In this case, instead of k − 1 bits, Al-
ice’s input is a bit-string with k bits given by ~x =
(a0, a1..., ak−1). Bob’s correlated input ~y is also a bit-
string with k bits given by yi = δi,b+1. Then, the
Tsirelson-like inequality from information causality is

|
∑
{~x},{~y}

(−1)
−→x ·−→y C~x,~y| ≤ 2k

√
k . (13)

To cast the above problem of finding the Tsirelson’s
bound in the context of quantum mechanics, we need to
use Tsirelson’s theorem [19]. It says that for any quan-
tum state |Ψ〉 ∈ A

⊗
B shared by two observers Alice

and Bob with their measurement outcomes being As ∈
[−1, 1](s ∈ {1 · · ·m}) and Bt ∈ [−1, 1](t ∈ {1 · · ·n}), re-
spectively, then their quantum correlation function can
be expressed by the inner product of two real unit vectors
αs, βt ∈ Rm+n.

Now, given the correlation function C~x,~y used in (12) or
(13), the Tsirelson’s theorem guarantees that we can find
the corresponding unit vectors α~x, β~y ∈ Rdim[A]+dim[B]

such that C~x,~y = α~x · β~y, where dim[A] and dim[B] are
the numbers of Alice’s and Bob’s measurement settings,
respectively. Then, we can cast the problem of finding
the Tsirelson-like bound in (12) or (13) into the following
form of optimal problem for SDP,

maximize |
∑
{~x},{~y}

(−1)~x·~yα~x · β~y | (14a)

s.t. ‖α~x ‖= ‖β~y ‖= 1 , ∀ ~x, ~y. (14b)

Then, the associated dual problem is

minimize

m∑
q=1

yq (15a)

s.t. S =
m∑
q=1

yqDq − C � 0. (15b)

We now will turn the problem (14) into the primal
problem (10) by constructing the matrices X, C and Ai’s
from the unit vectors α~x and β~y. Following the way in
[20], the mapping is as follows. Define the matrix P
whose columns are vectors (α1, ..., αdim[A], β1, ...βdim[B]).
Then the SDSP matrix X is given by PTP , which can
be put into the following block form

X =
(
E F
G H

)
where the matrix elements of each block are Eij = αi ·αj ,
Fib = αi · βb , Gaj = βa · αj and Hab = βa · βb with
i, j = 1, · · · dim[A] and a, b = 1, · · · dim[B]. Note that F
and G are used in (14), and instead E and H are used in
(14b). Therefore, we can write down the matrices C and
Dq’s accordingly so that the problem (14) is equivalent to
the problem (10). It is easy to see that C is a matrix with
only non-vanishing off-diagonal block of matrix elements
given by (−1)~x·~y, and Dq’s are the diagonal matrices with
only one nonzero unit matrix element. We omit their
detailed form here.

After setting up the SDP for finding the Tsirelson-
like bound, we use the package named SeDuMi [21] to
solve it for both case (a) and (b) with any value of k.
The result agrees extremely well with the bound obtained
from information causality up to O(10−5). To be more
concrete, the numerical results are shown below: for case
(a) up to k = 8, we have

k 3 4 5 6 7 8
SDP 6.9282 16.0000 35.7771 78.3837 169.3281 362.0387

This agrees extremely well with the RHS of (12). Simi-
larly, for case (b) up to k = 8, we have

k 3 4 5 6 7 8
SDP 13.8564 32.0000 71.5542 156.7673 338.6562 724.0773

It again agrees extremely well with (13). Our numerical
program can run for any k, and it seems there is no vio-
lation of information causality will be expected based on
what we have tested.
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