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Lecture 4:

Oscillators to Waves

1 Review two masses

Last time we studied how two coupled masses on springs move

If we take κ= k for simplicity, the two normal modes correspond to
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One way to make sure we only excite these modes is to displace the masses so that their ini-
tial conditions are either x1= x2, for the symmetric (slow) mode or x1=−x2 if we want to excite
only the antisymmetric (fast mode). In other words, the normal mode solutions are in 1-to-1
correspondence with initial conditions. We can draw the initial conditions as

symmetric mode asymmetric mode

Figure 1. Initial conditions to excite normal modes

These pictures are going to be a little hard to look at if there are multiple masses. Thus it is
helpful to draw the initial conditions as points in the y direction. That is, we write
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Figure 2. Initial conditions to excite normal modes. The x-axis in these plots is the index of the mass

(only two masses, m1 and m2 in this case). The y-axis is the displacement from equilibrium that you can

release the masses from to get them oscillating with a normal mode frequency. In other words, these are

plots of the eigenvectors.
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In these figures, the displacement is still longitudinal (in the direction of the spring), we
are just drawing it in the y axis because it is easier to see.

2 Three masses

Now consider 3 identical masses with all identical spring constants

x1 x2
x3 (3)

The equations of motion for the first mass are

m
d2x1

dt2
=−2kx1+ kx2 (4)

As before, you should think of first term on the right as the force generated on mass 1 when it is
moved by a distance x1. The sign on −2kx1 is negative since it always wants to go back to equi-
librium. The second term +kx2 is the force that is exerted on mass 1 when mass 2 is moved
holding everything else fixed . It has a + sign, since if I move mass 2, then mass 1 wants to leave
its equilibrium position. If we move mass 3 holding everything else fixed, no force is exerted on
mass 1.

Similarly,

m
d2x2

dt2
=−2kx2+ kx1+ kx3 (5)

and

m
d2x3

dt2
=−2kx3+ kx2 (6)

Writing

x~ =
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
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0
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0
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

eiωt (7)

The equations of motion become

−ω2x~ =ω0
2
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
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0 1 −2



x~ (8)

where

ω0=
k

m

√

(9)

is the frequency associated with a single mass.
The normal mode frequencies are the eigenvalues of this matrix. Plugging in to Mathematica

we find eigenvalues and associated eigenvectors
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0
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
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ω3=ω0 2+ 2
√√

, x~ (0)=







1

− 2
√

1





 (12)
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We have ordered these from slowest to fastest.

To think about these solutions, it is helpful to plot the eigenvectors (the initial displace-
ments)
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Figure 3. Initial conditions to excite normal modes with 3 masses

From these pictures, it is not hard to see why the frequencies are higher for the third solu-
tion - the masses are more stretched apart, so there is more force between them, causing faster
oscillation.

3 Completeness of eigenvectors

Before going on to N modes, it’s worth making one very important point. Recall from linear
algebra that the set of eigenvectors of any matrix is complete, meaning that any vector can be
written as a linear combination of eigenvectors. For oscillators, this means that any solution to
the equations of motion can be written as

x~ (t)=
∑

j

cjx~ j(t) (13)

where the sum is over normal modes n. The normal modes are solutions x~ j(t) to the equation of
motion with frequencies ωj. That is

x~ j(t)= x~ j
0cos(ωjt) (14)

where x~ j
0 is a constant vector.

In summary, normal modes oscillate with a single frequency. A general solution can always
be written as a sum of normal modes.

4 N modes

Now we’ll solve the N mass system. You should think of lots of springs put together as being
simply one long spring where the masses are pieces of the spring itself. We’ll see the wave equa-
tion result from this system. Solutions to the wave equation describe not just normal modes,
but also waves, such as pulses sent down the spring (like pulses sent down a slinky). These
pulses are called traveling waves, which are actually linear combinations of normal modes.
Understanding waves will occupy the rest of the course, but first we have to solve the N spring
system.

We’ll construct the equations of motion for the N springs. Then we’ll solve the coupled
equations numerically for finite N to get a sense for what the answer should look like. Then
we’ll solve the system exactly for any N .

You may find this section quite abstract. It is not critical that you follow all the details here
and be able to reproduce it all on your own. This is one of the most complicated derivations we
will do in the course. Do your best. You should understand the result though, as summarized in
Section 4.4.
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4.1 Equations of motion

Ok, so, we want to string N masses together. Adding more masses to the right of mass 3 does
not affect the equations of motions for masses 1 and 2. So their equations are

m
d2x1

dt2
=−2kx1+ kx2 (15)

and

m
d2x2

dt2
= kx1− 2kx2+ kx3 (16)

as before. Mass 3 is now like mass 2 – it has masses to the right and left of it. Thus,

m
d2x3

dt2
= kx2− 2kx3+ kx4 (17)

In fact, it is easy to see that the generalization for any of the middle masses is

m
d2xn

dt2
= kxn−1− 2kxn+ kxn+1 (18)

The last mass has no mass on its right, so it gets an equation like mass 1:

m
d2xN

dt2
= kxN−1− 2kxN (19)

Eq. (18), (15) and (19) are what we want to solve.

Putting all of these equations together with time dependence eiωt for all masses leads to the
matrix equation

−ω2x~ =ω0
2
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



−2 1
1 −2 1

1 −2 ···
··· ··· ···

··· −2 1
1 −2

















x~ (20)

with ω0=
k

m

√

as usual. All the entries not shown are zero.

4.2 Numerical solutions

First, let’s solve for the eigenvalues and eigenvectors of this system numerically using Mathe-
matica. With 20 masses, the displacements associated with the 15th eigenvalue is
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(21)

You may notice that it looks a lot like a cosine curve.

For the 6 mass system, we can plot the displacements for all the normal modes at the same
time. Here they are, with the dots for clarity:
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Figure 4. Normal modes displacements for the 6 mass system. These curves look like sine curves.

Already with six masses, in Figure 4, we see that the normal modes look like sine and cosine
curves. They are not complete periods though – they stop abruptly. This is due to the equa-
tions of motion for masses 1 and N being determined by Eqs. (15) and (19) rather than the
equation (18) that the rest of the masses satisfy. What is special about 1 and N is that they are
attached to rigid walls, while all the other masses are attached to springs only. These rigid walls
correspond to fixed boundary conditions at n=0 and n=7:

Figure 5. Same as Figure 4, but with interpolations extended to n= 0 and n= 7 to show the boundary

conditions.

To be clear, there is really no mass at n = 0, but we are just pretending one is there. Now we
can see that the solutions look like

xn=B sin(pn)eiωt (22)

for some p. The boundary conditions imply that p=
π

N +1
j for some j = 1, 2, 3, ...... These p are

called wavenumbers. In the continuum limit, we will see that wavenumber p=
2π

λ
with λ the

wavelength. In the discrete case, p is dimensionless so it’s harder to think of it as related to a
wavelength. The fact that the wavenumbers are quantized by the boundary conditions is
extremely important, both classically and in quantum mechanics. We will be revisiting this
quantization at length throughout the course.
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4.3 Exact solution

With the numerical solution giving a hint of where to look, let us just solve the system. We
want to find vectors xn that satisfy Eq. (18):

d2xn

dt2
=ω0

2 [xn−1− 2xn+ xn+1] (23)

Let’s take a guess

xn=Beipneiωt (24)

That the time dependence is exponential follows from linearity – we always guess this. Here we
are also guessing that since our numerical solution looks like sine functions the n dependence
should be oscillatory.

Plugging our guess in we get

−ω2eipn=
[

eip (n−1)− 2eipn+ eip (n+1)
]

ω0
2 (25)

Dividing both sides by −eipn gives

ω2= [2− e−ip− eip ]ω0
2 (26)

=[2− 2 cos(p)]ω0
2 (27)

Thus, we have found solutions for any B as long as ω and p are related by

ω(p)≡± 2(1− cos(p))
√

ω0 (28)

this is a type of dispersion relation. We will come back to dispersion relations later (once we
have talked about dispersion).

To fix p, we need to use the boundary conditions, that is, the equations of motion for the
end masses. The dispersion relationship doesn’t tell us the sign of p. In fact, both p and −p

lead to the same ω so we can add solutions with p an −p and still have a solution. Considering
that the numerical solutions looked like sine curves, let’s guess

xn=B sin(pn)eiωt (29)

Now, mass 1 satisfies Eq. (15), m
d2x1

dt2
=−2kx1+ kx2. Plugging in our guess gives

−Bω2sin p=Bω0
2[−2 sin p+ sin 2p] =−Bω0

2sin p[2− 2cos p] (30)

where sin(2x) = 2 sin(x)cos(x) was used. Using Eq. (27) we then find that our guess works. You
should make sure that you agree that Eq. (29) satisfies both Eq. (15) and Eq. (18) at this
point.

Finally, we need to use the equation for mass N . It satisfies m
d2xN

dt2
= kxN−1 − 2kxN as in

Eq. (19). So

−Bω2sinNp=Bω0
2[ sin (N − 1) p− 2sinNp] (31)

Substituting Eq. (27) on the left-hand side, canceling the −2sin Np terms, and then expanding
sin (Np−p) using sin(α− β) = sinαcosβ − sinβcosα gives

2 sinNp cos p= sin (N − 1) p= sinNp cos p− sin p cosNp (32)

Thus

0= sinNp cos p+ sin p cosNp= sin ((N +1)p) (33)

This equation is only satisfied if

p=
π

N +1
j , j=1, 2, 3, ··· (34)

This are the same eigenvalues we found by guessing after Eq. (22). We have now derived rigor-
ously that the equations of motion for masses 1 and N correspond to boundary conditions where
we hold masses n=0 and n=N +1 fixed.

Thus the normal mode frequencies are

ω2=2
(

1− cos
π

N +1
j
)

ω0
2, j=1, 2, 3···N (35)
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and the solutions are xn = B sin(pn)e±iωt. Let’s check that this is the right answer for N = 3.
We find

j=1, ω2=2
(

1− cos
π

4

)

ω0
2=

(

2− 2
√ )

ω0
2 (36)

j=2, ω2=2
(

1− cos
π

2

)

ω0
2=2ω0

2 (37)

j=3, ω2=2

(

1− cos
3π

4

)

ω0
2=

(

2+ 2
√ )

ω0
2 (38)

These are exactly the frequencies we found in Eqs. (10) to (12).
For large N , the lowest frequencies have j≪N thus using

cos(x)= 1− 1

2
x2+ ···, x≪ 1 (39)

we find

ω2=2
(

1− cos
π

N +1
j
)

ω0
2=

(

π

N +1
j
)

2
ω0
2= p2ω0

2 (40)

That is

• For a large number of modes, ω=ω0p: the frequency is proportional to the wavenumber

In other words, the dispersion relation becomes linear:

ω(p)= pω0 (41)

This linearity will be important when we discuss dispersion.

4.4 Summary

In summary, we found the following solution for a large N number of masses connected by
springs. For each integer j = 1, 2, 3, ··· there is a single normal mode solution. The position of
mass n during the oscillation of normal mode j is given by

xn
(j)

(t)= sin

(

πj

N +1
n

)

cos(ωjt+ φj) (42)

We have chosen to write the solutions in manifestly real form (meaning we use sines and cosines
rather than exponentials). The phase φj is arbitrary. The frequencies are given by

ωj=ω0 2
(

1− cos
π

N +1
j
)

√

, (43)

The normal mode solutions are periodic with frequencies ωj.
For small j

ωj≈ πj

N +1
ω0 (44)

An arbitrary solution can be written as a sum over normal modes as

(x~ )n(t)=
∑

j

ajsin

(

πj

N +1
n

)

cos(ωjt+ φj) (45)

for some real constants aj and φj

These solutions all satisfy the boundary conditions (x~ j)0(t) = (x~ j)N+1(t) = 0. It is straightfor-
ward to work out the general solution for other boundary conditions.

5 Continuum limit

We will now take the limit N → ∞. This will turn our discrete problem into a continuous
problem, and our differences into derivatives.
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With N masses, we called the displacement of each mass from its equilibrium point xn. Since
all the springs have the same constant, at equilibrium, all the masses are a distance ∆x apart.
Let us define a function A(∆x, t) as the amplitude of the displacement from equilibrium at a
point x. So,

A(n∆x, t)= xn(t) (46)

Thus, plots like this
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are plots of A(x, t). To be clear, these displacements are still longitudinal (in the direction of
the springs), but we are drawing A(x, t) in the transverse direction. A(x, t) so far only has
values at discrete points given by x=n∆x. Its value at those points is xn(t).

In terms of A(x, t), the equations of motion for the coupled system, Eq. (18)

d2xn

dt2
=

k

m
[xn−1− 2xn+ xn+1] (48)

become
∂2

∂t2
A(n∆x, t)=

k

m
[A((n+1)∆x, t)− 2A(n∆x, t)+A((n− 1)∆x, t)] (49)

=
k

m
∆x

[

A(n∆x+∆x, t)−A(n∆x, t)

∆x
− A(n∆x, t)−A(n∆x−∆x, t)

∆x

]

(50)

Writing x=n∆x this becomes

∂2

∂t2
A(x, t)=

k

m
∆x

[

A(x+∆x, t)−A(x, t)

∆x
− A(x, t)−A(x−∆x, t)

∆x

]

(51)

Starting to look like calculus...
As ∆x→ 0, this becomes

d2

dt2
A(x, t)=

k

µ

[

∂A(x, t)

∂x
− ∂A(x−∆x, t)

∂x

]

(52)

where µ =
m

∆x
is the mass per unit length or mass density. We also define E = k∆x as the

elastic modulus to get

d2

dt2
A(x, t)=

E

µ

1

∆x

[

∂A(x, t)

∂x
− ∂A(x−∆x, t)

∂x

]

(53)

Now take ∆x→ 0 turns the first derivatives into second derivatives. Writing

v≡ E

µ

√

(54)

and we find

∂2

∂t2
A(x, t)= v2

∂2

∂x2
A(x, t) (55)

This is the wave equation.

6 Solving the wave equation

The wave equation is linear, so we can solve it with exponentials. Writing

A(x, t)= eiωteikx (56)

we get

ω2= v2k2 (57)
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So

ω(k)= v |k | (58)

This is a linear dispersion relation. Since we have taken N → ∞, all modes have j ≪ N , thus,
the linearity of the dispersion relation is consistent with what we found for finite N ,

Since the wave equation (without damping) has only second derivatives, its easy to see that
the general solution for a fixed frequency ω is

Ak(x, t)= akcos( kx )cos(ωt)+ bksin(kx)cos(ωt) + ckcos(kx )sin(ωt)+ dksin(kx)sin(ωt) (59)

exactly as in the discrete case. The only difference is that now

ω(k) = vk (60)

instead of the more complicated ω(p) = 2(1− cos(p))
√

ω0 we found before.

Note that in the continuum case k has dimensions of
1

length
. We call k the wavenumber,

which is equal to
2π

wevelength
. In the discrete case p was dimensionless. Note that this k has

nothing to do with the spring constant – we just use the same letter “k” for both.
Which of ak, bk, ck or dk vanish depends on boundary conditions. Let’s consider some inter-

esting cases. First, we note that one solution is

A(x, t)= cos(kx )cos(ωt)− sin(kx)sin(ωt)= cos(kx−ωt) (61)

=cos
(

ω

v
(x− vt)

)

(62)

This solution has the property that A(x, t+∆t) =A(x − v∆t, t) meaning that the amplitude at
x in the future is given by the amplitude at position to the left at current time. In other words,
the curve is moving to the right. This is a right-moving traveling wave.

More generally, we note that for any function f(z) the amplitude

A(x, t)= f(x− vt) (63)

will satisfy the wave equation. Indeed, it is easy to check that

∂2

∂t2
f(x− vt)= v2f ′′(x− vt) (64)

∂2

∂x2
f(x− vt)= f ′′(x− vt) (65)

So that
[

∂2

∂t2
− v2

∂2

∂x2

]

f(x− vt) = 0 (66)

Thus A(x, t) = f(x− vt) is a general right-moving traveling wave. In general it will not be asso-
ciated with a fixed frequency. However, since any solution can be written as a sum over normal
modes, any traveling wave can be written as a sum over solutions of fixed frequency. How this is
done is known as the Fourier decomposition, which we study next time.

Waves of the form

A(x, t)= f(x+ vt) (67)

are also solutions for any f . These are left-moving traveling waves.
Another solution of fixed frequency is

A(x, t)= cos(kx−ωt)+ cos(kx−ωt)= 2cos(kx)cos(ωt) (68)

This solution has the property that the amplitudes at any two points x1 and x2 always have the
same ratio at any time

A(x1, t)

A(x2, t)
=

2cos(kx1)

2cos(kx2)
(69)

These are standing waves.
We see that

• Whether a traveling wave or a standing wave is produced depends on initial conditions.

• Standing waves are the sum of a left-moving and right-moving wave.

Solving the wave equation 9
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