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Lecture 2:

Driven oscillators

1 Introduction

We started last time to analyze the equation describing the motion of a damped-driven oscil-
lator:

d2x

dt2
+ γ

dx

dt
+ω0

2x=F (t) (1)

For small damping γ≪ω0, we found solutions for F (t)= 0 of the form

x(t)=Ae
−

γ

2
t
cos(ω0t+ φ) (2)

where the amplitude A and the phase φ are determined by initial conditions. Now we will see
how to deal with F (t).

We found the damped solution by guessing that an exponential x(t) = Aeαt should work,
since its derivatives are all proportional to itself. Plugging this ansatz in with F (t) we find

Aeαt(α2+ γα+ω0
2)=F (t) (3)

This will clearly not be solved for constant α unless F (t) happens to be of the form eαt. The
trick to solving this equation is to use linearity.

Let us suppose that we can write

F (t)=
∑

j

cjcos(ωjt) (4)

where cj are real numbers. It may seem that only a handful of functions can be written this
way, but actually any periodic function can be written as in Eq. (4) or as

F (t)=
∑

j

[ajsin(ωjt)+ bjcos(ωjt)] (5)

with real numbers aj and bj. This truly remarkable fact is known as Fourier’s theorem, and we
will study it soon. For now, let us just take Eq. (4) as given.

Once F (t) is written as a sum of cosines, we can solve the differential equation for each
cosine separately then add them. By linearity we then get a solution to the original equation.
That is, if we can find functions xj(t) satisfying

d2xj

dt2
+ γ

dxj

dt
+ω0

2xj= cos(ωjt) (6)

Multiplying this equation by cj and summing of j gives

∑

j

cj

[

d2xj

dt2
+ γ

dxj

dt
+ω0

2 xj

]

=
∑

j

cj[cos(ωjt)] (7)

Therefore, if we define

x(t)=
∑

cjxj(t) (8)

we immediately get
d2x

dt2
+ γ

dx

dt
+ω0

2x=F (t) (9)

as desired.
In summary, assuming Eq. (4) holds (we will come back to this soon), we have reduced

solving Eq. (1) to solving Eq. (6). That is, if we can solve the equation with a cos(ωdt) driving
force, we can solve the equation for any driving force.
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2 Driven oscillator

Our first task is to solve
d2x

dt2
+ γ

dx

dt
+ω0

2 x=
F0

m
cos(ωdt) (10)

Here we have made the normalization more physical by adding F0, for the strength of force with
units of force, and dividing by the oscillator mass m to get an acceleration (the left hand side

has units of acceleration, as in
d2x

dt2
). What’s a good guess for a solution? Trying x(t) = cos(ωdt)

or x(t) = sin(ωdt) will not work since there are first and second derivatives in the equation. We
need exponentials.

The key to turning the problem from cosines into exponentials is to recall that

e−iωt= cos(ωt)− i sin(ωt) (11)

so that

cos(ωdt)=Re(e−iωdt) (12)

Now suppose we find a solution to

d2

dt2
z+ γ

d

dt
z+ω0

2 z=
F0

m
e−iωdt (13)

with a complex function z(t). Then we define

x(t)≡Re [z(t)] (14)

Taking the real part of Eq. (13) then gives

Re

[

d2

dt2
z+ γ

d

dt
z+ω0

2 z

]

=Re

[

F0

m
e−iωdt

]

(15)

which is exactly Eq. (10). So we have reduced the problem to using an exponential driving force
instead of a cosine driving force.

Plugging in a guess z(t) =Ce−iωdt into Eq. (15) gives

Ce−iωdt[−ωd
2− iγωd+ω0

2] =
F0

m
e−iωdt (16)

Now the eiωdt factors drop out and we have a simple algebraic relation

C =
F0

m

1

ω0
2− iγωd−ωd

2
(17)

Thus

z(t)=
F0

m

1

ω0
2− iγωd−ωd

2
e−iωdt (18)

To get the solution to the original equation with a real function x(t) we use Eq. (14):

x(t)=Re

[

F0

m

1

ω0
2− iγωd−ωd

2
e−iωdt

]

(19)

Now we just have to simplify this using algebra.
First, we get the i′s to the numerator by writing

1

ω0
2− iγωd−ωd

2
=

ω0
2−ωd

2+ iγωd

ω0
2−ωd

2+ iγωd

1

ω0
2−ωd

2− iγωd

=
ω0
2−ωd

2+ iγωd

(ω0
2−ωd

2)2+(γωd)2
(20)

≡A+Bi (21)

where

A=
ω0
2−ωd

2

(ω0
2−ωd

2)2+(γωd)2
B=

γωd

(ω0
2−ωd

2)2+(γωd)2
(22)

Then

x(t) =Re

[

F0

m
(A+Bi)e−iωdt

]

=
F0

m
Re[(A+Bi)(cos(ωdt)− i sin(ωdt))] (23)

=
F0

m
(A cosωdt+B sinωdt) (24)
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In summary, we found an exact solution to Eq. (10):

x(t) =
F0

m

{

ω0
2−ωd

2

(ω0
2−ωd

2)2+(γωd)2
cosωdt+

γωd

(ω0
2−ωd

2)2+(γωd)2
sinωdt

}

(25)

2.1 Transients

We found a single exact solution. What happened to the boundary conditions? The dependence
on boundary conditions is entirely determined by solutions to the homogeneous equation, with
F =0:

d2x0

dt2
+ γ

dx0

dt
+ω0

2 x0=0 (26)

Solutions to this equation are called homogeneous solutions. The solution x(t) in Eq. (25) is
called the inhomogeneous solution. Note that x0(t) + x(t) will also satisfy the inhomogeneous
Eq. (10), due to linearity. Thus we can always add a homogeneous solution to an inhomoge-

neous solution. We saw before that the homogeneous solutions all have e
−

γ

2
t
factors, plus pos-

sibly some oscillatory component. Thus they die off at late time. For this reason, they are called
transient. Transients are determined by boundary conditions. If you have a driving force for
long enough time, then the transient is irrelevant.

2.2 Phase lag

A good way to see the physics hidden in the solution x(t) is to take limits. First, consider the
limit with no damping, γ=0. Then,

x(t)=
F0

m

1

ω0
2−ωd

2
cosωdt (27)

We can compare this to our driving force F (t) = F0cosωdt. For ωd < ω0 the sign of the position
and the force are the same so they are exactly in phase. Now say we crank up the driving fre-
quency ωd until it reaches then surpasses ω0. For ωd > ω0, the sign of the solution flips and the
oscillator is out out of phase with the driver. Physically, the oscillator can’t keep up with the
driving force: it experiences phase lag.

2.3 Power and energy

We see from Eq. (25) there is a part of x(t) which is exactly proportional to the driving force
F (t) = F0cosωdt and a part which is out of phase. We call the in-phase part the elastic ampli-

tude. It is proportional to

A=
ω0
2−ωd

2

(ω0
2−ωd

2)2+(γωd)2
(28)

The out-of-phase part is the absorptive amplitude. Its magnitude is

B=
γωd

(ω0
2−ωd

2)2+(γωd)2
(29)

Thus for γ = 0, no damping, there is no absorptive part. Since the absorptive part is propor-
tional to γ it should have to do with energy being lost from the oscillator into the system. To
see how this works, we need to compute the energy and the power.

Recall that work is force times displacement W =F∆x and power is work per unit time:

P =
W

∆t
=F

∆x

∆t
(30)

For small displacements and small times, this becomes

P =F
dx

dt
(31)
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Plugging in our solution x(t) =
F0

m
[A cos(ωdt)+B sin(ωdt)]

P =F0cos(ωdt)

[

−ωd
F0

m
A sin(ωdt)+ωd

F0

m
B cos(ωdt)

]

(32)

=−
F0

2

2m
ωdA sin(2ωdt) +

F0
2

m
Bωd cos

2(ωdt) (33)

where 2sinθcosθ= sin(2θ) has been used. This is the power put into the system by the dri-

ving force.

We see that the absorptive part is proportional to cos2ωdt which is positive for all times.
Thus it always takes (absorbs) power. On the other hand, the elastic amplitude is proportional
to sin(2ωdt) which is sometimes positive and sometimes negative. These are shown here
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Figure 1. Absorptive and elastic amplitudes

When the power is negative, as in the elastic amplitude, the oscillator is returning power to
the driver. The elastic amplitude averages to zero. Since γ = 0 implies that the absorptive
amplitude vanishes so the entire solution is elastic, we draw the logical conclusion that with no
damping (γ = 0) no net power is needed to drive the system (a little power is needed to get it
started, but once it’s moving, the driver no longer does work).

The average power put into the system is over a period T =
2π

ωd
is

〈P 〉=
1

T

∫

0

T

dtP (t) =
F0

2

2m
Bωd=

(

F0
2

2γm

)

(γωd)2

(ω0
2−ωd

2)2+(γωd)2
(34)

Here is a plot of this average power as a function of ωd for fixed γ and ω0.

Figure 2. Power absorbed for γ =2 and ω0=5 as a function of the driving frequency ωd. The maximum

is when ωd = ω0 known as resonance. The dashed line is half of the maximum power. The length of the

dashed line between the points where it hits the curve (width at half-maximum) is γ.
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This power absorption curve has a maximum at ωd = ω0 (you can check this) where 〈P 〉 =
F0

2

2γm
. This is known as a resonance.γ. One way to find the resonance frequency ω0 of a system

is by varying the driving force until maximum power is absorbed. The power is half the resonant

power, 〈P 〉=
F0

2

4γm
, when

ωd=
1

2
4ω0

2+ γ2
√

±
1

2
γ (35)

The difference between these two driving frequencies is γ. Thus, one can also read γ off of the
plot in Fig. 2: it is the value of the width at half-maximum. This kind of curve is called a
Lorentzian. Its maximum is at ω0 and its width is γ.
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