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Lecture 1:
Simple Harmonic Oscillators

1 Introduction

The simplest thing that can happen in the physical universe is nothing. The next simplest
thing, which doesn’t get too far away from nothing, is an oscillation about nothing. This course
studies those oscillations. When many oscillators are put together, you get waves.

Almost all physical processes can be explained by breaking them down into simple building
blocks and putting those blocks together. As we will see in this course, oscillators are the
building blocks of a tremendous diversity of physical phenomena and technologies, including
musical instruments, antennas, patriot missiles, x-ray crystallography, holography, quantum
mechanics, 3D movies, cell phones, atomic clocks, ocean waves, gravitational waves, sonar, rain-
bows, color perception, prisms, soap films, sunglasses, information theory, solar sails, cell phone
communication, molecular spectroscopy, acoustics and lots more. Many of these topics will be
covered first in lab where you will explore and uncover principles of physics on your own.

The key mathematical technique to be mastered through this course is the Fourier trans-
form. Fourier transforms, and Fourier series, play an absolutely crucial role in almost all
areas of modern physics. I cannot emphasize enough how important Fourier transforms are in
physics.

The first couple of weeks of the course build on what you’ve covered in 15a (or 16 or 11a or
AP50) – balls and springs and simple oscillators. These are described by the differential equa-
tion for the damped, driven oscillator:

d2x(t)

dt2
+ γ

dx(t)

dt
+ω0

2x(t)=
F (t)

m
(1)

Here x(t) is the displacement of the oscillator from equilibrium, ω0 is the natural angular fre-
quency of the oscillator, γ is a damping coefficient, and F (t) is a driving force. We’ll start with
γ =0 and F =0, in which case it’s a simple harmonic oscillator (Section 2). Then we’ll add γ, to
get a damped harmonic oscillator (Section 4). Then add F (t) (Lecture 2).

The damped, driven oscillator is governed by a linear differential equation (Section 5).
Linear equations have the nice property that you can add two solutions to get a new solution.
We will see how to solve them using complex exponentials, eiα and e−iα, which are linear combi-
nations of sines and cosines (Section 6). A review of complex numbers is given in Section 7.
Studying multiple coupled oscillators will lead to the concept of normal modes, which lead
naturally to the wave equation, the Fourier series, and the Fourier transform (future lectures).

2 Why waves? Why oscillators?

Recall Hooke’s law: if your displace a spring a distance x from its equilibrium position, the
restoring force will be F = −kx for some constant k. You probably had this law told to you in
high school or 15a or wherever. Maybe it’s an emperical fact, deduced from measuring springs,
maybe it was just stated as true. Why is it true? Why does Hooke’s law hold?

To derive Hooke’s law, you might image you need a microscopic description of a spring (what
is it made out of, how does it bend, how are the atoms arranged, etc.). Indeed, if you hope to
compute k, yes, absolutely, you need all of this. In fact you need so much detail that generally
it’s impossible to compute k in any real spring. But also generally, we don’t care to compute k,
we just measure it. That’s not the point. We don’t want to compute k. What we want to know
is why is the force is proportional to displacement. Why is Hooke’s law true?
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First of all, it is true. Hooke’s law applies not just to springs, but to just about everything:

Figure 1. The restoring force for pretty much anything (bending trees, swings, balls, tires, etc) is linear

close to equilibrium.

You can move any of these systems, or pretty much anything else around you, a little bit
away from its equilibrium and it will want to come back. The more you move it, the stronger
the restoring force will be. And often to an excellent approximation, the distance and force are
directly proportional.

To derive Hooke’s law, we just need a little bit of calculus. Let’s say we dispace some
system, a spring or a tire or whatever a distance x from its equilibrium and measure the func-
tion F (x). We define x= 0 as the equibrium point, so by definition, F (0) = 0. Then, we can use
Taylor’s theorem

F (x)=F (0)+xF ′(0)+
1

2
x2F ′′(0)+ ··· (2)

Now F (0) = 0 and F ′(0) and F ′′(0) etc are just fixed numbers. So no matter what these num-
bers are, we can always find an x small enough so that F ′(0)≫ 1

2
xF ′′(0). Then we can neglect

the
1

2
x2F ′′(0) term compared to the xF ′(0) term. Similarly, we can always take x small enough

that all of the higher derivative terms are as small as we want. And therefore,

F (x) =−kx (3)

with k = −F ′(0). We have just derived Hooke’s law! Close enough to equilibrium, the restoring
force for anything will be proportional to the displacement. Since y = −kx is the equation for a
line, we say systems obeying Hooke’s law are linear. Thus, everything is linear close to equilib-
rium. More about linearity in Section 5.

You might also ask, why does F depend only on x? Well, what else could it depend on? It
could, for example, depend on velocity. Wind resistance is an example of a velocity-dependent
force. However, sinec we are assuming that the object is close to equilibrium, its speed must be
small (or else our assumption would quickly be violated). So ẋ is small. Thus we can Taylor
exapnd in ẋ as well

F (x, ẋ)= x
∂F (x, ẋ)

∂x

∣

∣

∣

∣

x=x=0˙
+ ẋ

∂F (x, ẋ)

∂ẋ

∣

∣

∣

∣

x=ẋ=0

+ ··· (4)

where the terms ··· are higher order in x or ẋ, so they are subleading close to equilbrium.

Writing
∂F (x, ẋ)

∂ẋ

∣

∣

∣

x=ẋ=0
=−mγ we then have

F (x)=−kx−mγẋ (5)

Then F =ma with a= ẍ gives

d2x(t)

dt2
+ γ

dx(t)

dt
+ω0

2x(t) = 0 (6)

as in Eq. (1) with ω0 =
k

m

√

. γ is called a damping coefficient, since the velocity dependence

tends to slow the system down (as we will see).
The other piece of Eq. (1), labeled F (t), is the driving force. It represents the action of

something external to the system, like a woman pushing the swing with the girl on it, or the car
tire being compressed by the car.
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3 Simple harmonic motion

We have seen that Eq. (1) describes universally any system close to equilibrium. Now let’s solve
it. First, take γ=0. Then Eq. (1) becomes

d2

dt2
x(t)+ω0

2x(t)= 0 (7)

For a spring, ω0 =
k

m

√

, for a pendulum ω0 =
g

L

√

. Other systems have different expressions for

ω0 in terms of the relevant physical parameters.

We can solve this equation by hand, by plugging into Mathematica, or just by guessing.
Guessing is often the easiest. So, we want to guess a function whose second derivative is propor-
tional to itself. You know at least two functions with this property: sine and cosine. So let us
write as an ansatz (ansatz is a sciency word for “educated guess”):

x(t) =A sin(ωt) +B cos(ωt) (8)

This solution has 3 free parameters A, B and ω. Plugging in to Eq. (7) gives

−ω2[A sin(ωt) +B cos(ωt)] +ω0
2 [A sin(ωt)+B cos(ωt)] = 0 (9)

Thus,

ω=ω0 (10)

That is, the angular frequency ω of the solution must be the paramter ω0 =
k

m

√

in the differen-

tial equation. We get no constraint on A and B.

ω is called the angular frequency. It has units of radians per second. The frequency is

ν =
ω

2π
(11)

units of 1/sec. The solution x(t) we found goes back to itself after t→ t+T where

T =
1

ν
=

2π

ω
(12)

is the period. T has units of seconds. The function x(t) =A sin(ωt) +B cos(ωt) satisfies x(t) =
x(t+nT ) for any integer n. In other words, the solutions oscillate!

A and B are the amplitudes of the oscillation. They can be fixed by boundary conditions.
For example, you specify the position and velocity at any given time, you can determine A and
B. To be concrete, suppose we start with x(0)= 1m and x′(0)=2

m

s
. Then,

1m=x(0)=A sin(ω0)+B cos(ω0)=B (13)

2
m

s
=x′(0)=ωAcos(ω0)−ωB sin(ω0)=ωA (14)

So we find A=
2

ω

m

s
and B=1m.

Keep in mind that the angular frequency ω is not fixed by boundary conditions. It is deter-

mined by the physical problem: ω =
k

m

√

where k=−F ′(0) and m is the mass of the thing oscil-

lating. That is why if you start a pendulum from any height and give it any sort of initial kick,
it will oscillate with the same frequency.

Another representation of the general solution x(t) = A sin(ωt) + B cos(ωt) is often conve-
nient. Instead of using A and B we can write

x(t) =C sin(ωt+ φ) (15)

using trig identities, we find

C sin(ωt+ φ)=C cos(φ)sin(ωt)+C sin(φ)cos(ωt) (16)

and so

A=C cos(φ) B=C sin(φ) (17)
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Thus we can swap the amplitudes A and B for the sine and cosine components for a single
amplitude C and a phase φ.

4 Damped oscillators

A damped oscillator dissipates its energy, returning eventually to the equilibrium x(t) = const
solution. When the object is at rest, the damping force must vanish. For small velocities, the
damping force should be proportional to velocity: F = −γ

dx

dt
with γ some constant. Contribu-

tions to the force proportional to higher powers of velocity, like F =−κ
(

dx

dt

)

2
will be suppressed

when the object is moving slowly. Thus the generic form for damped motion close to equilib-
rium is

d2x

dt2
+ γ

dx

dt
+ω0

2x=0 (18)

Indeed, this equation describes a great many physical systems: vibrating strings, sound waves,
etc. Basically everything we study in this course will have damping.

Neither sin(ωt) nor cos(ωt) solve the damped oscillator equation. Sines and cosines are pro-
portional to their second derivatives, but here we have also a first derivative. Since

d

dt
sin(ωt) ∝

cos(ωt) and vice versa, neither sines nor cosines alone will solve this equation. However, the
exponential function is proportional to its first derivative. Thus exponentials are a natural
guess, and indeed they will work.

So, let’s try plugging

x(t) =Ceαt (19)

into Eq. (18). We find

α2Ceαt+ γαCeαt+ω0
2Ceαt=0 (20)

Dividing out by Ceαt we have reduced this to an algebraic equation:

α2+ γα+ω0
2=0 (21)

The solutions are

α=−γ

2
±

(

γ

2

)

2
−ω0

2

√

(22)

And therefore the general solution to the damped oscillator equation is

x(t) = e
−

γ

2
t

(

C1e
t

( γ

2

)

2
−ω0

2

√

+C2e
−t

( γ

2

)

2
−ω0

2

√

)

(23)

The cases when γ > 2ω0, γ=2ω0 and γ < 2ω0 give very different physical behavior.

4.1 Underdamping: γ < 2ω0

The case γ < 2ω0 includes the case when γ = 0. For γ = 0 the damping vanishes and we should
regain the oscillator solution. Increasing γ from zero should slowly damp the oscillator. Let’s see
how this works mathematically.

Since γ < 2ω0 then

ωu= ω0
2−

(

γ

2

)

2
√

(24)

is a real number. In terms of ωu, the general solution is then

x(t) = e
−

γ

2
t
(C1e

iωut+C2e
−iωut) (25)

Since x(t) must be real, we must also have C1=C2
⋆. Thus we can write

C1=
1

2
Aeiφ, C2=

1

2
Ae−iφ (26)
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for two real constants A and φ. This leads to

x(t) =Ae
−

γ

2
t
cos(ωut+ φ) (27)

Thus we see that in the underdamped case, the object still oscillates, but at an angular fre-

quency ωu= ω0
2−

( γ

2

)

2
√

and the amplitude slowly goes down over time.

Note that both ω0 and γ have dimensions of
1

seconds
. Their relative size determines how much

the amplitude gets damped in a single oscillation. To quantify this, we define the Q-factor (or
Q--value) as

Q≡ ω0

γ
(28)

The smaller the Q the more the damping. Q stands for quality. The higher Q is, the higher
quality, and the less resistance/friction/damping is involved.For example, a tuning fork vibrates
for a long time. It is a very high quality resonator with Q∼ 1000. Here are some examples:

Atomic clock: Q≈ 1011 Tuning fork: Q≈ 1000 Silly putty: Q∼ 0.01

Figure 2. Some Q-factors

Q is roughly the number of complete oscillations a system has gone through before it’s
amplitude goes down by a factor of around 20. To see this, note that due to the cos(ωut) factor,

it takes a time tQ =
2π

ωu
Q to go through Q cycles. Then due to the e

−
γ

2
t
factor, the amplitude

has decayed by a factor of

exp
(

−γ

2
t
)

= exp

(

−γ

2
Q
2π

ωu

)

= exp

(

−ω0

ωu
π

)

≈ exp(−π)= 0.043 (29)

In the next-to-last step, we have used that ωu ≈ ω0 when Q ≫ 1. (If Q is not large, then the

system is highly damped and couting oscilations is not so useful). Since 0.043≈ 1

23
we get the

1

20
rule.

4.2 Overdamping: γ > 2ω0

In the over damped case, γ > 2ω0, then
( γ

2

)

2 − ω0
2 is positive so the roots in Eq. (22) are real.

Thus the general solution is simply

x(t)=C1e
−u1t+C2e

−u2t (30)

with

u1=
γ

2
+

(

γ

2

)

2
−ω0

2

√

, (31)

and

u2=
γ

2
−

(

γ

2

)

2
−ω0

2

√

(32)

Both solutions have exponential decay. Since u1 > u2, the u1 solution will die away first, leaving

the u2 solution. Overdamped systems have Q<
1

2
.
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4.3 Critical damping: γ =2ω0

In the critically damped case, the two solutions in Eq. (23) reduce to one:

x(t)=Ce−ω0t (33)

What happened to the other solution? That is, a second-order differential equation is supposed
to have two independent solutions, but we have only found one. To find the other solution, let’s
look at the damped oscillator equation again, but set γ = 2ω0 to begin with. Then the equation
is

d2x

dt2
+2ω0

dx

dt
+ω0

2x=0 (34)

Solving this with Mathematica, we find the general solution is

x(t)= (C+Bt) e−ω0t (35)

You should check yourself that this ansatz satisfies Eq. (34).
A comparison of over-damping, underdamping and critical damping is shown in Figure 3.

One thing to note is that the critically damped curve goes to zero faster than the overdamped
curve! Can you think of an application for which you’d want a critically damped oscillator?

0 1 2 3 4 5 6

- 0.4

- 0.2

0.0

0.2

0.4

t

under damping

critical damping

overdamping

Figure 3. Comparison of underdamping, overdamping, and critical damping. We have taken ω0= 3 and

γ=8, 2 and 6.

5 Linearity

The oscillator equation we have been solving has a very important property: linearity. Differen-
tial equations with at most single powers of x are linear differential equations. For example,

d2x

dt2
+ω2x=0 (36)

is linear. If there is no constant (x0 term), the differential equations are homogeneous.
Linearity is important because it implies that if x1(t) and x2(t) are solutions to the equa-

tions of motion for a homogenous linear system then

x(t) =x1(t)+ x2(t) (37)

is also a solution. Let’s check this for Eq. (36). By assumption x1(t) and x2(t) satisfy:

d2x1

dt2
+ω2x1=0 (38)

d2x2

dt2
+ω2x2=0 (39)
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Adding these equations, we find
d2x

dt2
+ω2x=0 (40)

So that x satisfies Eq. (36) as well. So, solutions to homogeneous linear differential equations

add.

5.1 Examples of linear systems

The damped oscillator in Eq. (18) is a linear system:
d2x

dt2
+ γ

dx

dt
+ω0

2x=0.

If you have a string of tension T and mass density µ going along the x direction, then its dis-
placement in a transverse direction y(x, t) satisfies

µ
∂2

∂t2
y(x, t)−T

∂2

∂x2
y(x, t)= 0 (41)

This is the wave equation. It is linear. (We’ll derive this in a couple of weeks).

Electromagnetic waves are described by Maxwell’s equations. With a little work, you can
combine two of Maxwell’s equations into an equation for the electric field E~ (x, t) of the form
(we’ll derive this soon too):

c2
∂2

∂t2
E~ (x, t)− ∂2

∂x2
E~ (x, t)= 0 (42)

with c the speed of light. Thus each component of E~ satisfies the wave equation.

Sound waves, water waves, etc., all satisfy linear differential equations.

5.2 Forced oscillation

What happens if the equation is not homogeneous? For example, what if we had

d2x

dt2
=F1(t) (43)

Here, F (t) represents some force from a motor or the wind or someone pushing you on a swing
or the electromagnetic waves from the cell-phone tower transmitting that critical text message
to you during class.

It is in general hard to solve this differential equation. But let’s imagine we can do it and
find a function x1(t) which satisfies

d2x1

dt2
=F1(t) (44)

Say this is your motion on a swing when you are being pushed. Now say some friend comes and
pushes you too. Then

d2x

dt2
=F1(t)+F2(t) (45)

The amazing thing about linearity is that if we can find a solution x2(t) which satisfies

d2x2

dt2
=F2(t) (46)

Then x= x1+x2 satisfies
d2x

dt2
=F1(t)+F2(t) (47)

This is extremely important . It is the key to this whole course. Really complicated systems are
solvable by simpler systems, as long as the equations are linear.

In contrast, we cannot add solutions to nonlinear equations. For example, suppose we want
to solve

a
d2

dt2
x+ b

d

dt
x2=F1(t) +F2(t) (48)
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Although we can solve for x1 and x2 produced by the two forces separately, it does not then
follow that x= x1+ x2 is a solution with the combined force is present. The x2 term couples the
x1 and x2 solutions together, so there is interference.

All the systems we study in this course will be linear systems. An important example is elec-
tromagnetism (Maxwell’s equations are linear). Suppose you are making some radio waves in
your radio station with F1 = sin(7t) and some MIT student is making waves in her station with

F2= sin(4t). Then x1(t) =
1

49
sin(7t) satisfies Eq. (44) and x2(t) =

1

16
sin(4t) satisfies Eq. (46). We

then immediately conclude that

x(t)=
1

49
sin(7t)+

1

16
sin(4t) (49)

must satisfy Eq. (45). We just add the oscillations! Thus if there are radio waves at frequency
ν = 89.9 MHz flying around and frequency ν = 90.3 MHz flying around, they don’t interfere with
each other.

That explains why we can tune our radio – because electromagnetism is linear, we can add
radio waves. There is no interference! The different frequencies don’t mix with each other. All
we have to do is get our radio to extract the coefficient of the sin(7t) oscillation from x(t). Then
we will get only the output from our radio station. As we will see, you can always find out
which frequencies are present with which amplitudes using Fourier decomposition. We’ll
come back to this soon .

5.3 Summary

Linearity is a really important concept in physics. The definition of linearity is that all terms in

a differential equation for x(t) have at most one power of x(t). So
d3

dt3
x(t) = 0 is linear, but

d

dt
x(t)2 is nonlinear.

For linear systems, one can add different solutions and still get a solution. This lets us break
the problem down to easier subproblems.

Linearity does not only let us solve problems simply, but it is also a universal feature of
physical systems. Whenever you are close to a static solution x(t) = x0= constant, the equations
for deviations around this solution will be linear. To see that, we again use Taylor theorem. We
shift by x(t) → x(t) − x0 so the equilibrium point is now x(t) = 0. Then no matter how compli-
cated and nonlinear the exact equations of motion for the system are, when x − x0 ≪ 1, the
linear term, proportional to x−x0 will dominate. For example, if we had

d 2

dt2
x

x2− 2
e−x4

+
d

dt
x7+(x2− 4)sin3(x)= 0 (50)

then x(t)= x0=0 is a solution. For x≪ 1 this simplifies to

−1

2

d2x

dt2
− 4x=0 (51)

which is again linear (it’s the oscillator equation again).

6 Solving general linear systems

At this point, we’ve defined linearity, argued that it should be universal for small deviations
from equilibrium, and showed how it can help us combine solutions to a differential equation.
Now we will see how to solve general linear differential equations.

6.1 Exponentials, sines and cosines

A general linear equation has a bunch of derivatives with respect to time acting on a single func-
tion x:

···+ a3
d3

dt3
x+ a2

d2

dt2
x+ a1

d

dt
x+ a0x=F (t) (52)
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Let’s first consider the case when F = 0. A really easy way to solve these equations for F = 0 is
to consider solutions for which all the derivatives are proportional to each other. What is a func-
tion with this property? Sines and cosines have derivatives proportional to themselves:
d 2

dt2
sin(ωt) = −ω2sin(ωt), but only second (or even numbers of) derivatives. A function with all

of its derivatives proportional to itself is the exponential: x(t) =Ceαt

d

dt
Ceαt=Cαeαt (53)

As an example, let’s try this Ansatz into our oscillator equation, Eq. (8):

d2x

dt2
=−ω2x (54)

Plugging in x(t)=Ceαt gives

α2eωt=−ω2eωt (55)

which implies α= −ω2
√

or α=±iω,
Thus the solutions are

x(t) =C1e
iωt+C2 e

−iωt (56)

Recalling that

sin(ωt)=
eiωt− e−iωt

2i
, cos(ωt)=

eiωt+ e−iωt

2
(57)

We can also write

x(t)= i(C1−C2)sin(ωt)+ (C1+C2) cos(ωt) (58)

In summary

• Sines and cosines are useful if you have only 2nd derivatives

• Exponentials work for any number of derivatives

Now, if F =/ 0, then a simple exponential will not obviously be a solution. The key, however,
is that we can always write any function F (t) on the interval 0< t6T as a sum of exponentials

F (t) =
∑

n=−∞

∞

ane
2πin

t

T (59)

for some coefficients an. This is called a Fourier decomposition. Since we can solve the equa-

tion as if F (t) = e
2πin

t

T for a fixed n, we can then add solutions using linearity to find a solution
with the original F (t). Don’t worry about understanding this now – it’s just a taste of what’s to
come.

6.2 Relating eix to sin(x) and cos(x)

Suppose you didn’t know that sin(ωt) =
eiωt

− e−iωt

2iω
. How could you derive this?

One way is using the fact that we solved the oscillator equation

d2x

dt2
+ω2x=0 (60)

two ways. On the one hand we found

x(t)=A sin(ωt)+B cos(ωt) (61)

and on the other hand we found

x(t) =C1e
iωt+C2 e

−iωt (62)

Since the differential equation is second order (two derivatives), the solution is given
uniquely once two boundary conditions are set. Conversely, if we know the solution we can work
out the boundary conditions. For example, if the solution were x(t) = sin(ωt) then x(0) = 0 and
x′(0)=ω. Plugging in x(0)=0 to the exponential solution implies

C1+C2=0 (63)

Solving general linear systems 9



plugging in x′(0)=ω implies

iωC1− iωC2=ω (64)

The solution to these two equations is C1 = − 1

2i
and C2 =

1

2i
, as you can easily check. We thus

conclude that the two solutions are exactly equal and so

sin(ωt)=
eiωt− e−iωt

2i
(65)

Similarly

cos(ωt)=
eiωt+ e−iωt

2
(66)

You should have these relationships memorized – we will use them a lot.

7 Complex numbers (mathematics)

Complex numbers are a wonderful invention. They make complicated equations look really
simple. Being able to take the square root of anything is unbelievably helpful.

To see how important complex numbers are for solving equations, consider how sophisticated
mathematics needs to be to solve some equations. The equation

3x− 4= 0 (67)

has a solution x =
4

3
which is a simple rational number (rational numbers can be written as

ratios of whole numbers 0, 1,−1, 2,−2, ···).
To solve

x2− 2= 0 (68)

we need irrational numbers: x= 2
√

. Such numbers cannot be written as ratios of whole num-
bers.

To solve

x2+4=0 (69)

we need complex numbers. The solutions are x=±2i, with i= −1
√

.
Now the punch line: to solve

ax3+ bx2+ cx+ d=0 (70)

we still need only complex numbers. Complex numbers are the end of the road. Any polynomial
equation can be solved with complex numbers.

ax3+ bx2+ cx+ d=(x− r1)(x− r2)(x− r3) = 0 (71)

for some ri∈C.
Exponentials are for linear differential equations what complex numbers are for algebraic

equations. Any linear differential equation can be solved by exponentials. Say we had

a
d3

dt3
x(t)+ b

d2

dt2
x(t) + c

d

dt
x(t)+ dx(t)= 0 (72)

We can factor this into

(
d

dt
− r1)(

d

dt
− r2)(

d

dt
− r3)x(t) = 0 (73)

Thus if

(
d

dt
− r3)x(t)= 0 (74)

Then we have a solution. The solution is therefore a product of factors like

x(t)= eir3t (75)

So we’re always going to have exponential solutions to linear equations.
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7.1 Complex number arithmetic

I hope you’re already familiar with complex numbers from your math classes. If not, here’s a
quick review.

We can write any complex number as

z= a+ bi (76)

with a and b real. Then

z1+ z2= a1+ a2+(b1+ b2)i (77)

and

z1 · z2=(a1+ b1i)(a2+ b2i)= a1a2+ b1a2i+ b2a1 i+ b1b2i
2 (78)

=(a1a2− b1b2)+ (b1a2+ b2a1)i (79)

It’s helpful to define complex conjugation i→−i. In fact, we could have used −i instead of i
from the beginning. We define

z̄= a− bi (80)

as the complex conjugate of a complex number z= a+ bi.
Then

z z̄ =(a+ bi)(a− bi) = a2+ b2∈R (81)

The trick to dividing complex numbers is to use that zz̄ ∈R:

1

z
=

z̄

z̄ z
=

a− bi

a2+ b2
(82)

That is,

a2+ b2i

a1+ b1i
=(a2+ b2i)

1

a1+ b1i
=(a2+ b2i)

a1− b1 i

a1
2+ b1

2 =
a1a2+ b1b2

a1
2+ b1

2 +
a1b2− a2b1

a1
2+ b1

2 i (83)

For functions, we usually write f⋆ instead of f̄ for complex conjugation. For any function
f(x)∈C, we have

[f(x)] [f(x)]⋆∈R (84)

This is easy to see using that the conjugate of a product of complex numbers is the product of
the conjugates:

(ff⋆)⋆= f⋆f⋆⋆= f⋆f = ff⋆ (85)

Since ff⋆ is invariant under complex conjugation it must be real.
Any complex number can be also written as

z= reiθ= a+ bi (86)

to relate r and θ to a and b we use

z̄ = re−iθ (87)

a=
z+ z̄

2
= r(

eiθ+ e−iθ

2
)= r cosθ (88)

b=
z − z̄

2i
= r(

eiθ− e−iθ

2i
) = r sinθ (89)

z z̄= r2= a2+ b2 (90)

r is sometimes called the modulus of a complex number and θ the phase of a complex number.
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