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Lecture 3:

Coupled oscillators

1 Two masses

To get to waves from oscillators, we have to start coupling them together. In the limit of a large
number of coupled oscillators, we will find solutions while look like waves. Certain features of
waves, such as resonance and normal modes, can be understood with a finite number of oscilla-
tors. Thus we start with two oscillators.

Consider two masses attached with springs

(1)

Let’s say the masses are identical, but the spring constants are different.

Let x1 be the displacement of the first mass from its equilibrium and x2 be the displacement
of the second mass from its equilibrium. To work out Newton’s laws, we first want to know the
force on x1 when it is moved from its equilibrium while holding x2 fixed. This is

Fon 1 from moving 1=F =−kx1−κx1 (2)

The signs are both chosen so that they oppose the motion of the mass. There is also a force on
x1 if we move x2 holding x1 fixed. This force is

Fon 1 from moving 2= κx2 (3)

To check the sign, note that if x2 is increased, it pulls x1 to the right. There is no contribution
to this force from the spring between the second mass and the wall, since we are moving the
mass by hand and just asking how it affects the first mass. Thus

mẍ1=−(k+κ)x1+ κx2 (4)

similarly,

mx2̈=−(k+κ)x2+ κx1 (5)

One way to solve these equations is to note that if we add them, we get

m(ẍ1+ ẍ2)=−k(x1+ x2) (6)

This is just m ÿ = −ky for y = x1 + x2, so the solutions are sines and cosines, or cosine and a
phase:

x1+ x2=Ascos(ωst+ φs), ωs=
k

m

√

(7)

Another way solve them is taking the difference

m(ẍ1− ẍ2)= (−k− 2κ)(x1− x2) ⇒ x1− x2=Afcos(ωft+ φf), ωf =
k+2κ

m

√

(8)
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We write ωs for ωslow and ωf for ωfast, since ωf > ωs. Thus we have found two solutions each of
which oscillate with fixed frequency. These are the normal modes for this system. A general
solution is a linear combination of these two solutions. Explicitly, we have:

x1=
1

2
[(x1+x2)+ (x1− x2)] =

1

2
[Ascos(ωst+ φs) +Afcos(ωft+ φf)] (9)

x2=
1

2
[(x1+x2)− (x1− x2)] =

1

2
[Ascos(ωst+ φs)−Afcos(ωft+ φf)] (10)

If we can excite the masses so that Af = 0 then the masses will both oscillate at the fre-
quency ωs. In practice, we can do this by pulling the masses to the right by the same amount,
so that x1(0)= x2(0) which implies Af =0. The solution is then x1= x2 and both oscillate at the
frequency As for all time. This is the symmetric oscillation mode. Since x1= x2 at all times,
both masses move right together, then move left together.

If we excite the masses in such a way that As = 0 then x1 = −x2 and both oscillate at fre-
quency ωf. We can set this up by pulling the masses in opposite directions. In this mode, when
one mass is right of equilibrium, the other is left, and vice versa. So this is an antisymmetric

mode.

2 Beats

You should try playing with the coupled oscillator solutions in the Mathematica notebook oscil-
lators.nb. Try varying κ and k to see how the solution changes. For example, say m = 1, κ = 2
and k=4. Then ωs=2 and ωf =2 2

√
, Here are the solutions:

Behavior starting from x1=1, x0=0 Normal mode behavior

Figure 1. Left shows the motion of masses m=1, κ=2 and k=4 starting with x1=1 and x2=0. Right

shows the normal modes, with x1= x2=1 (top) and x1=1, x2=−1 (bottom).

If you look closely at the left plot, you can make out two distinct frequencies: the normal
mode frequencies, as shown on the right.

Now take κ= 0.5 and k=4. Then ωs=2 and ωf = 2.2. In this case

Behavior starting from x1=1, x0=0 Normal mode behavior

Figure 2. Motion of masses and normal modes for k= 0.5 and κ=4

2 Section 2



Now we can definitely see two distinct frequencies in the positions of the two masses. Are
these the two frequencies ωs and ωf? Comparing to the normal mode plots, it is clear they are
not. One is much slower. However, we do note that ωs ≈ ωf. What we are seeing here is the
emergence of beats. Beats occur when two normal mode frequencies get close.

Beats can be understood from the simple trigonometric relation

cos(ω1t)+ cos(ω2t)= 2cos
(

ω1+ω2

2
t
)

cos
(

ω1−ω2

2
t
)

(11)

When you excite two frequencies ω1 and ω2 at the same time, the solution to the equations of
motion is the sum of the separate oscillating solutions (by linearity!). Eq. (11) shows that this
sum can also be written as the product of two cosines. In particular, if ω1≈ω2 then

ω=
ω1+ω2

2
≈ω1≈ω2 ε=

ω1−ω2

2
≪ω1, ω2 (12)

So the sum looks like an oscillation whose frequency ω is the average of the two normal mode
frequencies modulated by an oscillation with frequency ε given by half the difference in the fre-
quencies.

Beats are important because they can generate frequencies well below the normal mode fre-
quencies. For example, suppose you have two strings which are not quite in tune. Say they are
supposed to both be the note A4 at 440 Hz, but one is actually ν1= 442Hz and the other is ν2=
339Hz. If you pluck both strings together you will hear the average frequency Ω = 440.5Hz, but

also there will be an oscillation at ε=
1

2
(442− 339)Hz= 1.5Hz. This oscillation is the enveloping

curve over the high frequency (440.5 Hz) oscillations

Figure 3. The red curve is cos
(

2π
ν1 − ν2

2
t
)

. When hearing beats, the observed frequency is the fre-

quency of the extrema νb eat = ν1− ν2 which is twice the frequency of this curve .

As you can see from the figure, due to the high frequency oscillations, there are peaks in the

amplitude twice as often as peaks in cos
(

2π
ν1− ν2

2
t
)

. Thus what we hear are beats at the beat

frequency

νbeat= |ν1− ν2| (13)

We use an absolute value since we want a frequency to be positive (it’s the same frequency
whether ν1 > ν2 or ν2 > ν1). Note that there is no factor of 2 in the conventional definition of
νbeat, since we only ever hear the modulus of the oscillation not the phase.

Thus with νf = 442Hz and νs = 339Hz the beat frequency is νbeat = 3Hz. Thus you hear
something happening 3 times a second. This is a regular beating in off-tune notes which is
audible by ear. In fact, it is a useful trick for tuning – change one string until the beating disap-
pears. Then the strings are in tune. We will see numerous examples of beats as the course pro-
gresses.

3 Two masses with matrices

We solved the two coupled mass problem by looking at the equations and noting that their sum
and difference would be independent solutions. For more complicated systems (more masses, dif-
ferent couplings) we should not expect to be able to guess the answer in this way. Can you
guess the solution if the two oscillators have different masses?
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To develop a more systematic procedure, suppose we have lots of masses with lots of dif-
ferent springs connected in a complicated way. Then the equations of motion are

m1x1̈= k11 x1+ k12 x2+ ···+ k1nxn (14)

··· (15)

mnxn̈= kn1 x1+ kn2x2+ ···+ knnxn (16)

where kij are constants, representing the strength of the spring between masses i and j. Note
that all of these equations are linear. What are the solutions in this general case? This is an
algebra problem involving linear equations. Hence we should be able to solve it with linear

algebra.

To connect to linear algebra, let’s return to our two mass system. Since the equations of
motion are linear, we expect them to be solved by exponentials x1 = c1e

iωt and x2 = c2e
iωt for

some ω, c1 and c2. As with the driven oscillator from the last lecture, we are using complex
solutions to make the math simpler, then we can always take the real part at the end. Plugging
in these guesses, Eqs. (4) and (5) become

−m1ω
2c1=−(k+κ)c1+ κc2 (17)

−m2ω
2c2=−(k+κ)c2+ κc1 (18)

We have let the masses be different for generality.

Next, we will write these equations in matrix form. To do so, we define a vector c~ as

c~=

(

c1
c2

)

(19)

Then the equations of motion become

M · c~ =





−k − κ

m1

κ

m1

κ

m2

−k −κ

m2



· c~ =−ω2c~ (20)

where M is defined by this equation.

You might recognize this as an eigenvalue equation. An n × n matrix A has n eigenvalues

λi and n associated eigenvectors v~i which satisfy

A · v~i=λivi~ (21)

The eigenvalues don’t all have to be different. Note that the left hand side is a matrix multi-
plying a vector while the right-hand side is just a number multiplying a vector. So studying
eigenvalues and eigenvectors lets us turn matrices into numbers! Eigenvalues and eigenvectors
are the fundamental mathematical concept of quantum mechanics. I cannot emphasize enough
how important it is to master them.

Let’s recall how to solve an eigenvalue equation. The trick is to write it first as

(A−λ1)v~ =0 (22)

where 1 is the n × n identity matrix. For n = 2, 1 =
(

1 0

0 1

)

. For most values of λ, the matrix

(A − λ1) has an inverse. Multiplying both sides of Eq. (22) by that inverse, we find v~ = 0. This
is the trivial solution (it obviously satisfies Eq. (21) for any A). The nontrivial solutions conse-
quently must correspond to values of λ for which (A− λ1)does not have an inverse. When does
a matrix not have an inverse? A result from linear algebra is that a matrix is not invertible if
and only if its determinant is zero. Thus the equation det(A − λ1) = 0 is an algebraic equation
for λ whose solutions are the eigenvalues λi.

It is useful to know that determinant of a 2× 2 matrix is

det

(

a b

c d

)

= ad−bc (23)
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You should have this memorized. For a 3× 3 matrix, the determinant is:

det





a b c

d e f

g h i



= a(ei− fh)− b(di− fg)+ c (dh−eg) (24)

You should know how to compute this, but don’t need to memorize the formula. Beyond 3 × 3,
you probably want to take determinants with Mathematica rather than by hand.

So, returning to Eq. (20), the eigenvalues −ω2 must satisfy

0=det(M +ω2
1) =det





−k −κ

m1

+ω2 κ

m1

κ

m2

−k −κ

m2

+ω2



 (25)

=

(

−k−κ

m1

+ω2

)(

−k−κ

m2

+ω2

)

− κ2

m1m2

(26)

This is a quadratic equation for ω2, with two roots: the two eigenvalues.
Let’s set m1 =m2 =m now to check that we reproduce our old result. Multiplying Eq. (26)

by m2, it reduces to

(k+ κ−mω2)2=κ2 (27)

Thus k+ κ−mω2=±κ. Or in other words

ω=ωs=
k

m

√

, ω=ωf =
k+2κ

m

√

(28)

These are the two normal mode frequencies we found above. Note that we didn’t have to take
the real part of the solution to find the normal mode frequencies. We only need to take the real
part to find the solutions x(t).

Now let’s try three masses. We can couple them all together and to the walls in any which
way

(29)

The equations of motion for this system will be of the form

m1x1̈= k11 x1+ k12 x2+ k13x3 (30)

m2x3̈= k21 x1+ k22 x2+ k23x3 (31)

m3x3̈= k31 x1+ k32 x2+ k33x3 (32)

Some of these kij are probably zero, but we don’t care. Writing x1= c1e
iωt, x2= c2e

iωt and x3=
c3e

iωt, these equations become algebraic:

−ω2c1=
k11
m1

c1+
k12
m1

c2+
k13
m1

c3 (33)

−ω2c2=
k21
m2

c1+
k22
m2

c2+
k23
m2

c3 (34)

−ω2c3=
k31
m3

c1+
k32
m3

c2+
k33
m3

c3 (35)

In other words,

(M +ω2
1)x~ =0 (36)
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with M the matrix whose entries are M ij =
kij

mi
. So to find the normal mode frequencies ω, we

need to solve det(M + ω2
1) = 0. For a 3 × 3 matrix, there will be 3 eigenvalues and hence three

normal-mode frequencies.
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