Midterm Oct 2025

1. Solve the equation of x(t) with initial condition:

$$x' - 3x = e^{-t}, \quad x(1) = 3$$

Hint: Use integrating factor.

Sol: The integrating factor would be $\alpha(t) = \exp[-\int 3dt] = e^{-3t}$.

Multiply the whole equation by the integrating factor $\alpha(x)$:

$$e^{-3t}x' - 3e^{-3t}x = \frac{d}{dt}(e^{-3t}x) = e^{-4t}$$

Integrate and add a constant *C*:

$$e^{-3t}x = \int dt \cdot e^{-4t} + C = -\frac{1}{4}e^{-4t} + C$$
$$x = -\frac{1}{4}e^{-t} + Ce^{3t}$$

The constant C can be obtained by the initial condition

$$x(1) = -\frac{1}{4}e^{-1} + Ce^{3} = 3. C = 3e^{-3} + \frac{1}{4}e^{-4}$$

$$x = -\frac{1}{4}e^{-t} + 3e^{3t-3} + \frac{1}{4}e^{3t-4}$$

2. Consider the 2nd order ODE:

$$2x^2y'' + 3xy' - 15y = 0$$

We know one of the solutions is x^{-3} .

Use the method of Wronskian to solve the equation.

Sol: Write the ODE into the standard form: $y'' + \frac{3}{2x}y' - \frac{15}{2x^2}y = 0$. $y_1 = x^{-3}$

$$y_{2} \sim y_{1} \int dx \frac{\exp\left(-\int_{0}^{x} P(x') \cdot dx'\right)}{y_{1}^{2}}$$

$$\exp\left(-\int_{0}^{x} P(x') \cdot dx'\right) = \exp\left(-\int_{0}^{x} \frac{3}{2x'} \cdot dx'\right) = \exp\left(-\frac{3}{2}\ln x\right) = x^{-\frac{3}{2}}.$$

$$y_{2} \sim x^{-3} \int dx \frac{x^{-\frac{3}{2}}}{x^{-6}} \propto x^{-3} x^{\frac{11}{2}} \sim x^{5/2}$$

$$y = C_{1} y_{1}(x) + C_{2} y_{2}(x) = C_{1} x^{-3} + C_{2} x^{5/2}$$

3. First consider the homogeneous ODE:

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = 0$$

- A. Find the general solutions x_h of this ODE.
- B. Consider the inhomogeneous ODE:

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 3x = 2\cos t$$

Find first one solution and then the general solutions x_{inh} of the inhomogeneous ODE. (10)

Hint: $2 \cos t$ is the real part of $2e^{-it}$.

Sol:

A. For the complex homogeneous ODE:

$$\frac{d^2z}{dt^2} + 4\frac{dz}{dt} + 3z = 0$$

Guess the solution $z_0e^{\alpha t}$. Plug in: The unknown α satisfies the algebraic equation:

$$\alpha^2 + 4\alpha + 3 = 0$$

The solutions are

$$\alpha = -1, -3$$

The general solutions of the ODE are linear combinations of the corresponding solutions:

$$x = c_1 e^{-t} + c_2 e^{-3t}$$

B. Since 2 cos t is the real part of $2e^{-it}$, the corresponding complex inhomogeneous ODE can be written as:

$$\frac{d^2z}{dt^2} + 4\frac{dz}{dt} + 3z = 2e^{-it}$$

Again try $a_0 e^{\alpha t}$:

$$(\alpha^2 + 4\alpha + 3)a_0e^{\alpha t} = 2e^{-it}$$

$$\alpha = -i, a_0 = \frac{1}{1 - 2i}$$

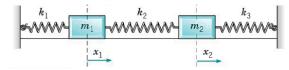
$$z = \frac{1}{1 - 2i}e^{-it}$$

$$x = \text{Re } z = \text{Re } \frac{1}{1 - 2i} e^{-it} = \text{Re } \frac{(1 + 2i)}{5} (\cos t - i \sin t) = \frac{1}{5} \cos t + \frac{2}{5} \sin t$$

C. General solutions x_{inh} of the inhomogeneous ODE

$$x_{\rm inh} = \frac{1}{5}\cos t + \frac{2}{5}\sin t + c_1e^{-t} + c_2e^{-3t}$$

4. Consider a coupled oscillation of two particles as shown below:



with equations of motion:

$$\frac{d^2x_1}{dt^2} = -\frac{k_1 + k_2}{m_1}x_1 + \frac{k_2}{m_1}x_2, \qquad \frac{d^2x_2}{dt^2} = \frac{k_2}{m_2}x_1 - \frac{k_2 + k_3}{m_2}x_2$$

which can be written in the notations of matrices:

$$\frac{d^2}{dt^2}x = -A \cdot x$$

Assume that the matrix **A** equals:

$$A \equiv \omega_0^2 \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$

The general solutions can be written as:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} \cos(\omega_1 t + \phi_1) + c_2 \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} \cos(\omega_2 t + \phi_2)$$

- A. Find the numbers ω_1 , $\binom{a_{11}}{a_{21}}$ and ω_2 , $\binom{a_{12}}{a_{22}}$.
- B. If the initial condition is $x_1(0) = a_m$, $x_2(0) = 0$, $x_1'(0) = x_2'(0) = 0$, find the solution. Hint: $\phi_1 = \phi_2 = 0$.

Sol:

A. Guess the solutions are $X = ae^{i\omega t}$, $A \cdot a = \omega^2 a$. This is eigenvalue problem of A. The characteristic equation:

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 5 - \lambda & 4 \\ 4 & 5 - \lambda \end{bmatrix} = \lambda^2 - 10\lambda + 9 = 0$$

$$\lambda = \omega^2 = \lambda_1 = \omega_1^2 = 1 \text{ or } \lambda_2 = \omega_2^2 = 9$$

$$\omega_1 = 1, \ \omega_2 = 3$$
For $\omega_1 = 1, \ (\mathbf{A} - \lambda \mathbf{I}) \cdot \mathbf{a}_1 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \cdot \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = 0, \ \mathbf{a}_1 = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

For
$$\omega_2 = 3$$
, $(\mathbf{A} - \lambda \mathbf{I}) \cdot \mathbf{a}_2 = \begin{pmatrix} -4 & 4 \\ 4 & -4 \end{pmatrix} \cdot \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = 0$, $\mathbf{a}_2 = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos(t + \phi_1) + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos(3t + \phi_2)$$
B. $x_1(0) = c_1 + c_2 = a_m, x_2(0) = c_1 - c_2 = 0$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{a_m}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos t + \frac{a_m}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos 3t$$

- 5. Diagonalization of a matrix: We have calculated in class that the eigenvectors of the matrix $\mathbf{A} = \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix}$ are $c_1 \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ and $c_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, corresponding to eigenvalues $\lambda_1 = 0$ and $\lambda_2 = 10$. The diagonalizing matrix can be written as: $\mathbf{U} = \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}$.
 - A. Calculate U^{-1} using $U^{-1} = \frac{1}{\det U} \begin{pmatrix} U_{22} & -U_{12} \\ -U_{21} & U_{11} \end{pmatrix}$.
 - B. Calculate $\mathbf{A} \cdot \mathbf{U}$ and $\mathbf{U} \cdot \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ and show they are equal.
 - C. Check $\mathbf{U}^{-1} \cdot \mathbf{A} \cdot \mathbf{U} = \mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

Sol:

A.
$$U^{-1} = \frac{1}{10} \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$$

B.
$$\mathbf{A} \cdot \mathbf{U} = \begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 30 \\ 0 & 10 \end{pmatrix}$$
,

$$\boldsymbol{U} \cdot \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 0 & 30 \\ 0 & 10 \end{pmatrix}$$

C.
$$\mathbf{U}^{-1} \cdot \mathbf{A} \cdot \mathbf{U} = \frac{1}{10} \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 30 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$