Homework VI

1. Prove that VrP = prP~1#, as p is an integer. You can use this formula in the following
problems.
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The same applied to Erp = prP~14, ,. Hence V1P = prP~1#.

Jxr+y?+ 22

2. The electric potential of a point charge @ fixed at the origin can be written as:
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Calculate —V and check it is the same as the electric field E of a point charge.

Pr-1 = —L r-2¢ We have used VrP = prP~1f forp = —1.
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3. The electric field E of a point charge Q fixed at the origin can be written as:
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A. Calculate V X E.

B. Calculate V - E and show it is equal to zero except at the origin r = 0.

Sol:

The first term equals zero.
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V-E=0 except for r = 0, where the two terms diverge — oo.



4. You would have found in problem 3 that V - E is infinite at 7 = 0. This divergence can
be avoided if we replace an infinitely small point charge with a small sphere of radius

R and constant charge density p. We learned from general physics outside the sphere

E is just like outside a point charge but inside the sphere the electric field equals:

=P
E=—
3801"7“

Calculate V - E again and check it is consistent with Gauss’s law.

Sol:

V - E is a costant for constant charge distribution.

5. The magnetic field inside a cylindrical current along the z axis with radius R and

constant current density j can be written as (r < R):
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Calculate 7 - B and 7 X B and check it is consistent with Maxwell Equations.

Sol:
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