

Homework VI

1. Prove that $\vec{\nabla}r^p = pr^{p-1}\hat{r}$, as p is an integer. You can use this formula in the following problems.

$$\text{Sol: } \frac{\partial}{\partial x} r^p = \frac{\partial r}{\partial x} \frac{d}{dr} r^p = \frac{\partial \sqrt{x^2+y^2+z^2}}{\partial x} pr^{p-1} = pr^{p-1} \frac{x}{\sqrt{x^2+y^2+z^2}} = pr^{p-1}\hat{r}_x$$

The same applied to $\frac{\partial}{\partial y,z} r^p = pr^{p-1}\hat{r}_{y,z}$. Hence $\vec{\nabla}r^p = pr^{p-1}\hat{r}$.

$$\hat{r} = \frac{\vec{r}}{r} = \frac{(x, y, z)}{\sqrt{x^2 + y^2 + z^2}}$$

2. The electric potential of a point charge Q fixed at the origin can be written as:

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

Calculate $-\vec{\nabla}V$ and check it is the same as the electric field \vec{E} of a point charge.

$$\text{Sol: } -\vec{\nabla}V = -\frac{Q}{4\pi\epsilon_0} \vec{\nabla}r^{-1} = \frac{Q}{4\pi\epsilon_0} r^{-2} \hat{r}. \text{ We have used } \vec{\nabla}r^p = pr^{p-1}\hat{r} \text{ for } p = -1.$$

3. The electric field \vec{E} of a point charge Q fixed at the origin can be written as:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

A. Calculate $\vec{\nabla} \times \vec{E}$.

B. Calculate $\vec{\nabla} \cdot \vec{E}$ and show it is equal to zero except at the origin $r = 0$.

Sol:

$$\begin{aligned} \text{A. } \vec{\nabla} \times \vec{E} &= \frac{Q}{4\pi\epsilon_0} \vec{\nabla} \times \frac{1}{r^2} \hat{r} = \frac{Q}{4\pi\epsilon_0} \left[\left(\vec{\nabla} \frac{1}{r^3} \right) \times \vec{r} + \frac{1}{r^3} \vec{\nabla} \times \vec{r} \right] \\ &= \frac{Q}{4\pi\epsilon_0} \left[-3r^{-4} \hat{r} \times \vec{r} + \frac{1}{r^3} \vec{\nabla} \times \vec{r} \right] \end{aligned}$$

The first term equals zero.

$$\text{The second term: } \vec{\nabla} \times \vec{r} = \left(\frac{\partial y}{\partial z} - \frac{\partial z}{\partial y}, \frac{\partial z}{\partial x} - \frac{\partial x}{\partial z}, \frac{\partial x}{\partial y} - \frac{\partial y}{\partial x} \right) = 0.$$

$$\vec{\nabla} \times \vec{E} = 0$$

$$\begin{aligned} \text{B. } \vec{\nabla} \cdot \vec{E} &= \vec{\nabla} \cdot \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} = \frac{Q}{4\pi\epsilon_0} \left[\left(\vec{\nabla} \frac{1}{r^3} \right) \cdot \vec{r} + \frac{1}{r^3} \vec{\nabla} \cdot \vec{r} \right] \\ &= \frac{Q}{4\pi\epsilon_0} \left[-3r^{-4} \hat{r} \cdot \vec{r} + \frac{1}{r^3} \vec{\nabla} \cdot \vec{r} \right] = \frac{Q}{4\pi\epsilon_0} \left[\frac{-3}{r^3} + \frac{3}{r^3} \right] = 0 \\ &\vec{\nabla} \cdot \vec{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3 \end{aligned}$$

$\vec{\nabla} \cdot \vec{E} = 0$ except for $r = 0$, where the two terms diverge $\rightarrow \infty$.

4. You would have found in problem 3 that $\vec{\nabla} \cdot \vec{E}$ is infinite at $r = 0$. This divergence can be avoided if we replace an infinitely small point charge with a small sphere of radius R and constant charge density ρ . We learned from general physics outside the sphere \vec{E} is just like outside a point charge but inside the sphere the electric field equals:

$$\vec{E} = \frac{\rho}{3\epsilon_0} r \hat{r}$$

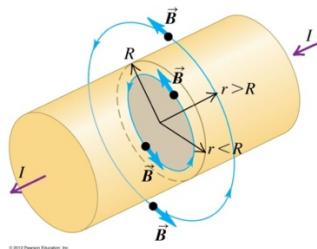
Calculate $\vec{\nabla} \cdot \vec{E}$ again and check it is consistent with Gauss's law.

Sol:

$$\vec{\nabla} \cdot \vec{E} = \vec{\nabla} \cdot \frac{\rho}{3\epsilon_0} r \hat{r} = \frac{\rho}{3\epsilon_0} \vec{\nabla} \cdot \vec{r} = \frac{\rho}{3\epsilon_0}$$

$\vec{\nabla} \cdot \vec{E}$ is a constant for constant charge distribution.

5. The magnetic field inside a cylindrical current along the z axis with radius R and constant current density j can be written as ($r < R$):



$$\vec{B} = \frac{\mu_0 j}{2} (y, -x, 0)$$

Calculate $\vec{\nabla} \cdot \vec{B}$ and $\vec{\nabla} \times \vec{B}$ and check it is consistent with Maxwell Equations.

Sol:

$$\vec{\nabla} \cdot \vec{B} = \frac{\mu_0 j}{2} \left(\frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} \right) = 0$$

$$\vec{\nabla} \times \vec{B} = \frac{\mu_0 j}{2} \left(-\frac{\partial x}{\partial z}, -\frac{\partial y}{\partial z}, \frac{\partial x}{\partial y} \right) = \frac{\mu_0 j}{2} (0, 0, 2) = (0, 0, \mu_0 j)$$