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CHAPTER 14

1. The spin-part of the wave function is the triplet

o2
m=1 x x:

1
m=0 Pl 2070

B

This implies that the spatial part of the wave function must be antisymetric under the
interchange of the coordinates of the two particles. For the lowest energy state, one of the
electrons will be in an » = 1, / = 0 state. The other will be inan»n=2,7=1, or / = 0 state.
The possible states are

1
f(u.m ()1131,,(8,) = gy (0, (1)) m=10,-1
5 (000 1, 1)1, 5)

Thus the total number of states with energy £> + E1is 3 x4 =12
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3. To lowest order in 7, the shift is given by

= 2V (L\ I duusin® nuf—J‘ duu(l— coslnu)*lV

The result that the energy shift is just the value of the perturbation at the mid-
point is perhaps not surprising, given that the square of the eigenfunctions do not,
on the average, favor one side of the potential over the other.
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13. The eigenstates of the unperturbed Hamiltonian are eigenstates of o, . They are
1 . 0 .
0 corresponding to E = E; and 1 corresponding to E = - Eo.

The first order shifts are given by

o ol o

a u)(0
0 5 3
for the two energy levels.

The second order shift for the upper state involves summing over intermediate states that
differ from the initial state. Thus, for the upper state, the intermediate state 1s just the
lower one, and the energy denominator is Eo — (- Eo) = 2Eo. Thus the second order shift is

ﬂ_z a uY0 a 1117;f|u|2
2E0(1 O{u* ,BII)(O I{u* ﬁ)(OJ7 2E,

For the lower state we get

o aloke ol p1-4

The exact eigenvalues can be obtained from

L, +o—¢ u o
u* ~E,+f-¢

—2E

det]

This leads to
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(b) Consider now
E, u )
H=
( v -E
where we have dropped the o and £ terms. The eigenvalues are easy to determine, and

they are
&= iﬁJ Eé +Xuv

a
b) and they satisfy

(E" 7" 1:) = B2+ Puv @

The eigenstates are written as [

v

For the upper state we find that the un-normalized eigenstate is

(on-z)
E¢+Zuv—E,

For the lower state it is

( —Au
,[ E;+Zuv +E
The scalar product
2 |uf +[(E; + Xuv)— Eg |= Zu(u*—) #0

which shows that the eigenstates are not orthogonal unless v = u*.
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3. If the two electrons are in the same spin state, then the spatial wave function must be
antisymmetric. One of the electrons can be in the ground state, corresponding to n =
1, but the other must be in the next lowest energy state, corresponding to n = 2. The
wave function will be

Y round (x,x,) = 715'(”1(x1)”2(x2) - uz(xl)”l(xz))

2 2
' B
sn =é&n

4. The energy for the n-th level is E, = e

Only two electrons can go into a particular level, so that with N electrons, the lowest
N2 levels must be filled. The energy thus is

v 1(NY &N°
E, =Y 2en’ z?ssq) ==

n=l

If N is odd, then the above is uncertain by a factor of &V which differs from the
above by (12/N )e, a small number if N is very large.
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6. With P=p + p,: p:%(pl—pz); X:%(lerxz); x =x, — x,, the Hamiltonian

becomes

P’ 1 212 PZ 1 2 2
H72M+2MmX +2y+2ymx

with M = 2m the total mass of the system, and x4 = m/2 the reduced mass. The energy

spectrum 1s the sum of the energies of the oscillator describing the motion of the center of
mass, and that describing the relative motion. Both are characterized by the same angular

frequency @ so that the energy is
1 1
E= ha)(N+5)+hm(n +E): hio(N +n+1)=ho(v+1)

The degeneracy is given by the number of ways the integer vcan be written as the sum of
two non-negative integers. Thus, for a given v we can have

(N.n) = (v,0),(v—=11),(v—2,2),...(Lv—1).(0,v)
so that the degeneracy is v+ 1.

Note that if we treat the system as two independent harmonic oscillators characterized by
the same frequency, then the energy takes the form

E =hon, +%) +ha(n, +—;): ho(n +n,+1) = ho(v+1)

which 1s the same result, as expected.
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7. When the electrons are in the same spin state, the spatial two-electron wave function
must be antisymmetric under the interchange of the electrons. Since the two electrons
do not interact, the wave function will be a product of the form

712-(u"(xl)uk<xz)— (e, ()

) 'z’
with energy E:En+Ek:2 z

= (n” + k). The lowest state corresponds to n = 1,
ma

k=2, with n* + k=5 . The first excited state would normally be the (2,2) state, but this
is not antisymmetric, so that we must choose (1,3) for the quantum numbers.

8. The antisymmetric wave function is of the form
N£7 é—,ﬁ(x,—a)’ 2k Craf /2 _ i)’ 2 i (s ma) ’2)
7

_NvZ e’llzﬂle’ﬂz(nz+x:l)’2(e’llz(xl’n)ﬂ _ e*ﬂz(n*n)a)
>
7

Let us introduce the center of mass variable X and the separation x by

x
x,=X-=

xl:XJrf' >

The wave function then becomes

T e i ixia .o
y=2N=—e """ " "sinhyax

To normalize, we require
[Cax[” axjy P =1

Some algebra leads to the result that

The second factor is present because of the overlap. If we want this to be within 1 part in
a 1000 away from 1, then we require that ¢ “” ~1/500, i.e. ua=1.76, or a = 0.353
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