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spherical, the rays
radiate from the
center of the
sphere.

Rays

Source

Wave fronts

© 2012 Pearson Education, Inc.

BRTATRZ Q0P THRE — T A I B 2 - R DAXE SR EKTH R A
BRI AP et g B A e B R ERESR (Ray) 5 BUOCER{ERE |



(a)

When wave fronts are
spherical, the rays
radiate from the

center of the
sphere.

Rays

Source
Wave fronts
(b)

When wave fronts are planar, the rays are
perpendicular to the wave fronts and parallel
to each other.
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In reality, we see a diffraction
pattern—a set of interference
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(a) Specular reflection
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Normal

Refracted
n a = nb
Material a | Material b

(b) Diffuse reflection Reflected
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(a)

Second focal point: The point
from which parallel incident

rays appear to diverge

.
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the image is inverted.
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For a diverging thin lens, f1s negative.
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(a) Plane waves reflected and refracted from a window

Hat outside
window g Incident Reflected
: A | wave = image of hat
/N P
{?& / Refracted wave

Man sees refracted
image of hat.

Woman sees reflected
image of hat. '
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(b) The waves in the outside air and glass
represented by rays
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Reflected
rays

Refracted
rays

(c) The representation simplified to show
just one set of rays
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(a) A straight ruler half-immersed in water

(b) Why the ruler appears bent

Observer ‘?&

Apparent
position of

ny, (air) end of ruler

= 1.00
n, (water)i="135

Actual position
of end of ruler
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(@) Atmosphere
(not to scale)

Light ray
from the sun
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(¢) Forming a rainbow. The sun in this illustration is directly behind
the observer at P.

The rays of sunlight that form the The two refractions
primary rainbow refract into the 2 disperse the colors.
droplets. undergo inter- =~
nal reflection, and _
refractout. =", -

Angles are exaggerated
for clarity. Only a primary
Observer  rainbow is shown.

at P
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(b) The paths of light rays entering the upper half of a raindrop

6=
5=
4=
Light rays 3
from sun : Down-sun
Y ~/ oint
2 ;‘ P
/)
S B S by ey o |~ / l" — _,J:
Raindrop ’,’
)
A = maximum ,
angle of light The pattern of rays entering the
from raindrop 6 lower half of the drop (not shown) is
3 the same but flipped upside down.
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Light from sun

A = 40.8° (violet)
to 42.5° (red)

(e) A secondary rainbow is formed by rays that
undergo two refractions and rwo internal

reflections. The angle A is larger for violet light
than for red.

Light from sun

A = 50.1° (red)
to 53.2° (violet)
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Secondary Rainbow

Water drops
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Total Internal Reflection 4= K7 &+

/Critical case
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Scattering H 5

i Electron
\ : moves in
.

plane 1 k

Atom

Incident beam
(unpolarized)

Rodmhon scattered
1 K is plane polorized
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Rayleigh Scattering
R R EZ et SR TR YR RS - RZEAHERE |

lecules at O oscillaté in
[ of the incident light
tennas that produce
‘ed light that reaches 1 i
v O is e
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/ oc f* Rayleigh Scattering

scatter
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Incident white light, y
unpolarized |

Electric charges in air molecules at O oscillate in
the direction of the E field of the incident light

from the sun, acting as antennas that produce - s hates
D] \ 5
scattered light. The scattered light that ILLthL\ i ARG O
the observer directly below O is = : 2> e i W,
polarized in the z-direction. T : > I
Air molecules scatter blue light more effectively than red light; This observer sees reddened sunlight because
we see the sky overhead by scattered light, so it looks blue. most of the blue light has been scattered out.
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Electromagnetic absorption by water

RHEK - Vibrational spectrum
X band, 2.9 pm Rotational spectrum

Absorption (1/m)
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FOLLOW NEWS FROM SCIENCE

SHARE - New material converts invisible, infrared energy into 00
© visible light

ﬂ By Robert F. Service | Jun.9,2016,2:00 PM
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OPTICAL MATERIALS

A highly efficient directional
molecular white-light emitter driven
by a continuous-wave laser diode

Nils W. Rosemann,”? Jens P. Eufiner,”* Andreas Beyer,"? Stephan W. Koch,">
Kerstin Volz,"? Stefanie Dehnen,>** Sangam Chatterjee“**

Tailored light sources have greatly advanced technological and scientific progress by
optimizing the emission spectrum or color and the emission characteristics. We
demonstrate an efficient spectrally broadband and highly directional warm-white-light
emitter based on a nonlinear process driven by a cheap, low-power continuous-wave
infrared laser diode. The nonlinear medium is a specially designed amorphous material
composed of symmetry-free, diamondoid-like cluster molecules that are readily obtained
from ubiquitous resources. The visible part of the spectrum resembles the color of a
tungsten-halogen lamp at 2900 kelvin while retaining the superior beam divergence of the
driving laser. This approach of functionalizing energy-efficient state-of-the-art
semiconductor lasers enables a technology complementary to light-emitting diodes for
replacing incandescent white-light emitters in high-brilliance applications.
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Fig. 1. Molecular structure and appearance as well as color temperatures associated with the
emission. (A) Adamantane-like cluster [(R¥'°°Sn),Se] (R%°® = 4—(CH,=CH)-CgH,). with tin and sulfur
atoms drawn as blue and yellow spheres, respectively; carbon (gray) and hydrogen (white) atoms are
given as wires. (B) Photograph of the as-prepared powder. (C) Photograph of a polymer film containing the
cluster sandwiched between two cover glass slips excited by 800-nm laser light in the bright center spot.
(D) Color temperatures given for various excitation fluencies, as indicated by individual gray-scale data
points. The characteristic ideal black-body emission for various temperatures is indicated by the solid line;
the square indicates the color temperature of standard emitter at T = 2856 K.
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Fig. 2. Emission characteristics. (A) Highly directional spatial emission pattern of the white-light spectrum
(white) and the CW excitation laser at 980 nm (red). The intensity distribution of a perfect Lambertian emitter
(gray) is given for reference. (B) White-light spectra for a pump wavelength of 980 nm. The pump power is
varied from 6 mW (light gray solid line) to 18 mW (black solid line). The normalized curves for black-body
radiation (T = 5000 K, dashed line; T = 2856 K, spaced dots) and a GaN-based white-light LED (narrow dots)

are shown for comparison. (C) Double-logarithmic plot of the white light input-output characteristics.
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(@) Interference of light waves passing through two slits

Coherent wave y

Cylindrical ~ fronts from two slits ~\|
wave fronts
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(b) Actual geometry (seen from the side)
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In real situatiéns, the distance R to the
screen is usually very much greater than
the distance d between the slits ...
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Bright bands where
wave fronts arrive in
-::phase and interfere
constructively

“+Dark bands where

“ wave fronts arrive out
of phase and interfere
destructively

(c) Approximate geometry

S2U dsiné

To screen

... SO we can treat the rays as
parallel, in which case the path
difference is simply r, — r; = dsin6.
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(c) Approximate geometry m m +1/2

(constructive (destructive
i interference, interference,
e bright regions) dark regions)
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To screen
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... SO we can treat the rays as
parallel, in which case the path
difference 1s simply r, — r; = dsiné.
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Intensity
at screen
~ 41, (two coherent sources)
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(a) PREDICTED OUTCOME:
Geometric optics predicts that this
setup will produce a single bright
band the same size as the slit.

(b) WHAT REALLY HAPPENS:
In reality, we see a diffraction
pattern—a set of bright and
dark fringes.

o
—

Parallel-ray monochromatic
light
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(a) A slit as a source of wavelets (b) Fresnel (near-field) diffraction
We divide the slit into [f the screen is close,
imaginary strips parallel the rays from the
to the slit’s long axis. different strips to a

A\ point P on the screen

Slit are not parallel.

width

Each strip is a source of
Huygens’s wavelets.

/

Plane waves
incident on the slit Screen
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Incoming
wave
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Viewing screen
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For the two strips shown, the path difference to P is (a/2) sin 6.
When (a/2) sin @ = A[2, the light cancels at P. This is true for the
whole slit, so P represents a dark fringe.

(b) Enlarged view of the top half of the slit

0 1s usually very small, so we can use the

, 9 approximations sin # = 6 and tan 6 = 6.
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(a)

I = 0.00831,
I = 0.0165],
I = 0.04721,
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(a) N = 2: two slits produce one minimum
between adjacent maxima.

2 slits: only primary maxima

L 0

m= —1 m=0 m=1

) N - e 3 slits: one secondary maximum between each pair of primary maxima
N = 8: eight slits produce taller, narrower

maxima in the same locations, separated by

v \ \ \4 \ \
] _______1 _______ - N: 3 - . . -
ﬂ 641,

8 slits: N — 2 = 6 secondary maxima between each pair of primary maxima

\AAAAA/

(c) N = 16: with 16 slits, the maxima are even
taller and narrower, with more intervening
minima.

e | RS TSRO !

V| N L TP — 0
m= —1 m=0 m =1
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(a) Basic setup for x-ray diffraction
Some x rays are scattered as they pass
through the crystal, forming an interference
pattern on the film. (Most of the x rays pass

straight through the crystal.) I
%
g I
Thin I
Lead crystal l
screen % g
X-ray
tube
X-ray beam
\ Film in

holder
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(b) Laue diffraction pattern for a thin section of quartz crystal
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(a) Scattering of waves from a rectangular array (b) Scattering from adjacent atoms in a row
Interference from adjacent atoms in a row is

Incident plane waves constructive when the path lengths a cos 6,

and a cos 0, are equal, so that the angle of
incidence 6, equals the angle of reflection
(scattering) 0,.

acosf, acos,

Scatterers (e.g., atoms)

© 2012 Pearson Education, Inc

SELHEE 2dsin@ =mA

(c) Scattering from atoms in adjacent rows
Interference from atoms in adjacent rows is
constructive when the path difference

2d sin 6 is an integral number of
wavelengths, as in Eq. (36.16).
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(@) Spacing of planes is d = af\/2. (b) Spacing of planes is d = a[\/3.
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(a) Apparatus for studying x-ray diffraction from a crystalline solid

detector
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(b) Relationship between incident angle 6 and Bragg angle «
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(a) Schematic apparatus for x-ray crystallography (b) X-ray diffraction pattern of diamond lattice

sample

pinholes /3

2).
2’ monochromator

. e

X-ray source
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