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Copper } 1 Element

@

Zinc $F Zn - Zn*t + 2e”
Sulfuric acid 2HT +2e~ - H,




Conducting paths
(traces)




s

HY

<

=, 0, ‘E‘
@—> @"
@—> ‘

‘ U, R
I
y —
A convention: 1| current is treated as a flow of
positive charges, regardless of whether the free
charges in the conductor are positive, negative,
or both.
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In a metallic conductor, the moving charges are
electrons — but the current still points in the

direction positive charges would flow.
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TABLE 25.1) Resistivities at Room Temperature (20°C)

Substance p (Q-m) Substance p (Q-m)
Conductors Semiconductors
Metals Silver 1.47 X 1078 Pure carbon (graphite) 3.5 X 107
Copper 1 72:% ‘T~ Pure germanium 0.60
Gold 244 X 1078 Pure silicon 2300
Aluminum 275 X 1078 Insulators
Tungsten 525 x 1078 Amber 5% 104
Steel 20 X 1078 Glass 1010104
Lead 22 X 1078 Lucite >10!3
Mercury 95 % 1678 Mica o161
Alloys Manganin (Cu 84%, Mn 12%, Ni 4%) 44 X 1078 Quartz (fused) 75 X 10'6
Constantan (Cu 60%, Ni 40%) 49 X 1078 Sulfur 1013
Nichrome 100 X 1078 Teflon >10!3
Wood 108-10'"

© 2016 Pearson Education, Inc.
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(a)

Ohmic resistor (e.g., typical metal wire): At a
given temperature, current is proportional to
voltage. J

1Slope = Ile

(b)
Semiconductor diode: a nonohmic resistor
1

In the direction of

voltage, I increases
nonlinearly with V.

14

In the direction of
negative current and
voltage, little current
flows.

positive current and

BB E (0 2 A B ER T B fH =5
BEHzs AR ERYEHER -
V =RI

Second digit Multiplier
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First digit
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(c) p Superconductor: At
temperatures below 7,

the resistivity
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- Figure 5.7 (a)A simple circuit consisting of a glass bar in series witha
T light bulb. At room temperature the bulb does not light because glass is
aninsulator. (b) But if the glass bar is heated (e.g. using a Bunsen
burner), the conductivity of the glass increases and the bulb lights.
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Battery 24l

Positive terminal
U = qubat

AV,

bat

Increasing U —>

Negative terminal

U=0
The charge escalator “lifts” charge from the
negative side to the positive side. Charge ¢
gains energy AU = ¢gAV,,,.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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(a)

Current

AV

bat

Current

The charge escalator moves charge from
one plate to the other. AV, increases as
the charge sepdrdtlon increases.

ht © 2008 Pearson Education, Inc. hing as Pearson Addison-Wesley.

(b)

S Ions are
not moving

When AV, = AV,_, the current stops
and the CdpdCltOl‘ 1s fully charged.
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TABLE 25.4] Symbols for Circuit Diagrams

Conductor with negligible resistance

ANNNN—— Resistor

Source of emf (longer vertical line always represents the positive
+] |5 terminal, usually the terminal with higher potential)

_W\/é' |+7 Source of emf with internal resistance r (r can be placed on either
side)

Ammeter (measures current through it)

— WS
/\—/\ Voltmeter (measures potential difference between its terminals)
\ 4
()
_/
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j£ E-ds= Z AV; = AV =0 Kirchhoff’s loop law

Start and

Add the potential
differences around «—>
the loop.

Loop law: AV, + AV, + AV, + AV, =0



(a) Sign conventions for emfs (b) Sign conventions for resistors

+&: Travel direction —&: Travel direction +IR: Travel opposite —IR: Travel in
from — to +: from + to —: fo current direction: current direction:
— Travel > <— Travel — — Travel —> <—Travel —
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(b) Applying the junction rule to point a eliminates /5.

—ww—| ww—||—

I <— —>1
Ip+bT R
I —> <

L AMA AMA—

R, ¢ R,

(a) Kirchhoff’s junction rule (b) Water-pipe analogy

Junction
I, —> I <« I
------ The current leaving

2" : 5
I +1 J/ a junction equals the
current entering it.

The flow rate of
water leaving the
pipe equals the flow
rate entering it.
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EXAMPLE 26.4 Charging a battery

wiTH VARIATION PROBLEMS

In the circuit shown in Fig. 26.11, a 12 V power supply with unknown
internal resistance r is connected to a run-down rechargeable battery
with unknown emf £ and internal resistance 1 {) and to an indicator
light bulb of resistance 3 ) carrying a current of 2 A. The current
through the run-down battery is 1 A in the direction shown. Find r, &,
and the current / through the power supply.

IDENTIFY and SET UP This circuit has more than one loop, so we must
apply both the junction and loop rules. We assume the direction of the
current through the 12 'V power supply, and the polarity of the run-down
battery, to be as shown in Fig. 26.11. There are three target variables, so
we need three equations.

EXECUTE We apply the junction rule, Eq. (26.5), to point a:

-I+1A+2A=0 SO I=3A

Figure 26.11 In this circuit a power supply charges a run-down
battery and lights a bulb. An assumption has been made about the
polarity of the emf £ of the battery. Is this assumption correct?

|
( : ) .
@ . 3) s

e ) A8 ) If

L
_ b J

To determine r, we apply the loop rule, Eq. (26.6), to the large, outer
loop (1):

12V - (3A)r—(2A)3Q)=0 so r=2Q

To determine &, we apply the loop rule to the left-hand loop (2):

—E+ (1A)(1Q) - 2A)3Q)=0 so E=-5V

The negative value for £ shows that the actual polarity of this emf is
opposite to that shown in Fig. 26.11. As in Example 26.3, the battery is
being recharged.

EVALUATE Try applying the junction rule at point b instead of point a,
and try applying the loop rule counterclockwise rather than clockwise
around loop (1). You’ll get the same results for 7/ and . We can check
our result for £ by using loop (3):

12V - (3A)(20) - 1A)(1Q)+E=0

which again givesus £ = —5 V.

As an additional check, we note that V;,, = V), — V, equals the volt-
age across the 3 () resistance, which is (2 A)(3 1) = 6 V. Going from
a to b by the right-hand branch, we encounter potential differences
+12V = (3A)(2Q) = +6V, and going by the middle branch, we
find —(=5V) + (1 A)(1 Q) = +6 V. The three ways of getting V,,
give the same results.

KEYCONCEPT In any circuit that has more than one loop,
Kirchhoff’s junction rule applies: At each junction, the sum of the cur-
rents into the junction must be zero.




EXAMPLE 26.6 A complex network

wiTH VARIATION PROBLEMS

Figure 26.12 shows a “bridge” circuit of the type described at the be-
ginning of this section (see Fig. 26.6b). Find the current in each resistor
and the equivalent resistance of the network of five resistors.

IDENTIFY and SET UP This network is neither a series combination nor
a parallel combination. Hence we must use Kirchhoff’s rules to find the
values of the target variables. There are five unknown currents, but by
applying the junction rule to junctions a and b, we can represent them
in terms of three unknown currents I, /», and /3, as shown in Fig. 26.12.

EXECUTE We apply the loop rule to the three loops shown:

13V—Il(1 Q) - (11 _13)(19) =0 (1)
—L(1Q) - (L+5)(2Q)+13V =0 (2)
—L(1Q) - 5(1Q) + L(1Q)=0 (3)

Figure 26.12 A network circuit with several resistors.

T

13V T

ool
N

One way to solve these simultaneous equations is to solve Eq. (3) for I,
obtaining I, = I; + I, and then substitute this expression into Eq. (2)
to eliminate . We then have

13V =0(29Q)-L(1Q) (1)
13V = 11(3 Q) + 13(5 Q) (2’)

Now we can eliminate /3 by multiplying Eq. (1") by 5 and adding the
two equations. We obtain

78V=Il(13Q) Il=6A

We substitute this result into Eq. (1") to obtain I3 = —1 A, and from
Eq. (3) we find I, = 5 A. The negative value of /5 tells us that its direc-
tion is opposite to the direction we assumed.

The total current through the network is I; + I, = 11 A, and the
potential drop across it is equal to the battery emf, 13 V. The equivalent
resistance of the network is therefore

13V

Req_ﬁ: 12 &)

EVALUATE You can check our results for 7, I, and I3 by substituting
them back into Egs. (1)-(3). What do you find?

KEYCONCEPT Some circuits have combinations of resistors that
are neither in series nor in parallel. To analyze any such circuit, use
Kirchhoff’s loop rule and junction rule.
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Ohmic resistor (e.g., typical metal wire): At a
given temperature, current is proportional to

voltage. I

-1
Slope = R

Semiconductor diode: a nonohmic resistor

In the direction of
positive current and
voltage, / increases
nonlinearly with V.
Vv

In the direction of
negative current and
voltage, little current
flows.

V =RI

Second digit

First digit
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Figure 4.13 In a system of two sodium atoms, the two 3s electrons a, Separation
occupy alower energy level thanin theisolated atoms. (Note the

similarity with the diagram of a hydrogen molecule, Fig.1.13.) Figure 4.12 The energy levels for the outer 3s electrons in a pair of
sodium atoms as a function of the separation between the atoms.
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Figure 4.14 (a) The energy levels for the 3s electronsin a group of N sodium atoms as a
function of the separation between the atoms. (b) For large values of N the states are so
close together that we effectively have a continuous band of allowed energies.




(a) (b)

Actual separation of
E atoms in the crystal

r Band
(}ap
=

__________ g; Band

| -

B
5 Gap
S n Band
) Gap
0 i Band

Pt LAEIRG T HVEE T RERR(REEAEUE) > 2R —(ElERETT > Ao Z TR A Re g FelfA |

[ FEYHE ~ < Bloch




0
), faa
!4s
3p >—' 3s
3s
s A »
@
=
78]
- ! e X
¢ |
‘;? I 2 e ———= s
- |
|
: a, Separation
: Figure 4.15 The formation of 1s, 2s, 2p and 3s energy bands in sodium.
-30F | The bands become progressively narrower for electrons which are more
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Figure 13-3 Showing the formation of energy bands from the energy levels of isolated
sodium atoms as the interatomic separation decreases. The dashed line indicates the

observed interatomic separation in solid sodium. The several overlapping bands that
ranctitiita aarh N nr A hand ara nnt indicated



Single potential well Periodic array of wells

Figure 13-9 Left: Allowed energies for an electron in a single potential well. Right: Allowed
energies in an array of periodically spaced wells and barriers. The levels shown are for a
well strength given by 2mV/*/h* = (11)?, and a barrier thickness b = //16. Note the
appearance of forbidden bands even for energies & greater than V.
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Figure 1.4 Theoccupation ofthe energy levelsin

potassium, Each electron is represented by a solid
circle.
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Figure 4.11 (a) The occupation of the electron energy levels in an isolated sodium atom.

(b) The occupation of the energy bands in a sodium crystal.
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(a) In an insulator at absolute zero, (c) A conductor has a partially
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A net displacement in the direction
opposite to E is superimposed on the
random thermal motion.
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Conductor without internal E field

o

ath of electron without E field. Electron
moves randomly.

N

Path of electron
with E field. The
motion is mostly
random, but ...

..*the E field results in a net
displacement along the wire.
e - P

Conductor with internal E field

(ﬁ@r» ——

E F = qE E ()

An electron has a nugatlvu charge g,
so the force on it due to the E field is
in the direction opposite to E.
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Vrms~10°m/s

(B8 F-HYEE
i 5

HEf 7 m bt o R G AHEIR
R > A DURBS TS E L FEFROR -

el
N
Y

v4~10"*m/s < Vpms

7R g/ N R
N LB T MBS

Y E A

fERE o TR —

R Vrms > RIEE T B Vems PATE
G



TABLE 25.1\ Resistivities at Room Temperature (20°C)

Substance p(Q+m) Substance p(Q+m)
Conductors Semiconductors
Metals Silver 1.47 X 1078 Pure carbon (graphite) 3.5 X 107
Copper 1.72 X 1078 Pure germanium 0.60
Gold 244 X 1078 Pure silicon 2300
Aluminum 275 X 1078 Insulators
Tungsten 525 x 1078 Amber 5% 101
Steel 20 X 1078 Glass 1010-104
Lead 722 X 1078 Lucite >10!3
Mercury 95 X 1078 Mica 10'!-10%
Alloys Manganin (Cu 84%, Mn 12%, N1 4%) 44 X 1078 Quartz (fused) 75 %X 10'0
Constantan (Cu 60%, Ni 40%) 49 X 1078 Sulfur 10'3
Nichrome 100 X 1078 Teflon >10!3
Wood {0°-1G"
© 2016 Pearson Education, Inc.
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1s S s 15 band

capacity 2N, filled

Figure 5.2 The occupation of (a) the energy levels in an isolated carbon atom, and (b) the
energy bands in a diamond crystal. Notice that there is an energy range E, separating the
highest occupied states (in the valence band) from the lowest vacant states (in the
conduction band). This is a characteristic feature of all insulators.

Energy

a, Separation

Figure 5.3 The energy levels of the 2s and 2p states for a group of N carbon atoms as a
function of the separation of the atoms.
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(b) A semiconductor has the same
band structure as an insulator but
a smaller gap between the valence

and conduction bands. -.., A
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Figure 5.8 (a) Avacant state (or hole) in the valence band corresponds to an incomplete
bond. (b) When an electric field is applied, an electron is able to move into this vacant state
and the hole moves to the position previously occupied by the electron. (c) As this process is
repeated, the hole is observed to move towards the negative end of the crystal.
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Consider a material with the band structure described above, with
its Fermi energy in the middle of the gap (Fig. 42.24). Find the
probability that a state at the bottom of the conduction band is
occupied at T = 300 K, and compare that with the probability at
T = 310K, for band gaps of (a) 0.200 eV: (b) 1.00 eV; (c) 5.00 eV.

'SOLUTION

IDENTIFY and SET UP: The Fermi-Dirac distribution function gives
the probability that a state of energy E is occupied at temperature T.
Figure 42.24 shows that the state of interest at the bottom of the con-
duction band has an energy E = Eg + E,/2 that is greater than the
Fermi energy Eg, with E — Eg = ES/Z. Figure 42.23 shows that

42.24 Band structure of a semiconductor. At absolute zero a
completely filled valence band is separated by a narrow energy
gap E; of 1 eV or so from a completely empty conduction band. At
ordinary temperatures, a number of electrons are excited to the
conduction band.

E

Conduction
band

B S Energ: 2ap

Valence
band

Semiconductor

(R
the higher the temperature, the larger the fraction of electrons with
energies greater than the Fermi energy.

EXECUTE: (a) When £, = 0.200 eV,
E-E _E 0.100 eV e
kT 2T (8617 x 107 eV/K)(300K)

3.87

1
fIE) = —g7— = 00205

For T = 310K, the exponent is 3.74 and f(E) = 0.0231, a 13%
increase in probability for a temperature rise of 10 K.

(b) For E; = 1.00 eV, both exponents are five times as large as
in part (a), namely 19.3 and 18.7; the values of f(E) are 4.0 x 107°
and 7.4 x 1077, In this case the (low) probability nearly doubles
with a temperature rise of 10-K.

(c) For E; = 5.0 eV, the exponents are 96.7 and 93.6; the val-
ues of f(E) are 1.0 x 107" and 2.3 x 10*". The (extremely low)
probability increases by a factor of 23 for a 10-K temperature rise.

EVALUATE: This example illustrates two important points. First, the
probability of finding an electron in a state at the bottom of the con-
duction band is extremely sensitive to the width of the band gap. At
room temperature, the probability is about 2% for a 0.200-eV gap,
a few in a thousand million for a 1.00-eV gap, and essentially zero
for a 5.00-eV gap. (Pure diamond, with a 5.47-eV band gap, has es-
sentially no electrons in the conduction band and is an excellent
insulator.) Second, for any given band gap the probability depends
strongly on temperature, and even more strongly for large gaps than
for small ones.
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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor
range may Screenshot ward by increasing the impurity concentration, and the range can be ex-
tended downwara .o merge eventually with the insulator range.
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(a) A donor (n-type) impurity atom has a fifth
valence electron that does not participate in

the covalent bonding and is very loos‘ul) bound.
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(b) Energy-band diagram for an n-type semi-
conductor at a low temperature. One donor
electron has been excited from the donor levels
into the conduction band.
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(a) An acceptor (p-type) impurity atom has only 2
three valence electrons, so it can borrow an He
electron from a neighboring atom. The resulting s 6 7 8 9 10
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(b) Energy-band diagram for an n-type semi- (b) Energy-band diagram for a p-type semi-
conductor at a low temperature. One donor conductor at a low temperature. One acceptor
electron has been excited from the donor levels level has accepted an electron from the valence
into the conduction band. band, leaving a hole behind.
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Figure 6.10 The structure of an n-channel MOSFET showing the source, gate and drain

region. The electrical contact to the gate is separated from the semiconductor by a thin layer
of insulator, typically silicon dioxide.
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Inversion layer

Figure 6.11 (a) When a positive voltageis applied to the gate the holesin the p-type
semiconductor are repelled from the surface, and the minority carrier conduction electrons
are attracted to the surface. (b) If the gate voltage exceeds the threshold value then an
inversion layer is created near the surface. In this layer the material behaves as an n-type
semiconductor and so provides a conducting channel between the source and the drain.
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Figure 6.10 The structure of an n-channel MOSFET showing the source, gate and drain
region. The electrical contact to the gate is separated from the semiconductor by a thin layer
of insulator, typically silicon dioxide.
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