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A wave packet formulation of this scattering can be approximated by considering the

stationary energy eigenfunction of this step potential. The solution is:
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Calculate the probability density as a function of x in terms of T, R,k at x < 0.Itis a

constant at x > 0.
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Figure 1: Behavior of a wave packet at a potential step, in the case EE > V. The potential
is shown in figure a. In figure b, the wave packet is moving towards the step. Figure ¢
shows the wave packet during the transitory period in which it splits in two. Interference
between the incident and reflected waves are responsible for the oscillations of the wave
packet in the x < 0 region. After a certain time (fig. d), we find two wave packets. The
first one (the reflected wave packet) is returning towards the left; its amplitude is smaller
than that of the incident wave packet, and its width is the same. The second one (the
transmitted wave packet) propagates towards the right; its amplitude is slightly greater
than that of the incident wave packet, but it is narrower.
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Energy eigenstate of the step potential for £ = 7.
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Figure 11.4. Same as for Fig. 11.3, but for two
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Probability density |w(x)|? as a function of position for an energy eigenstate with F— %Vo, giving
8(E)= 7% and k =, and setting 4 = 1 in (8.1.32). The value of |¢(0)| (equal to /2 here) is nonzero
for arbitrary phase shift (). The probability density decays exponentially for x > 0.




We conclude this section with some observations about particles in the
forbidden region. For energy eigenstates with £ < ¥V, and for the wave
packets built as a superposition of such eigenstates, there is some
nonvanishing probability density in the forbidden region x > 0. Such
nontrivial probability density implies some likelihood of detecting the
particle in the forbidden region. If so, it would seem that such a particle
would have an unphysical negative kinetic energy. This conclusion does
not follow 1in quantum mechanics, however. Once we measure the particle
position, the wave function collapses to become narrowly localized within
the forbidden region, in a region the size of the detector resolution. This
means that the collapsed wave function 1s no longer an energy eigenstate.
The measured value of the energy becomes ambiguous. For any localized

wave function, moreover, the expected value (/) of the kinetic energy 1s
always positive.
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SRRy TUNNELING THROUGH A BARRIER
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NOLLMOS

A 2.0-eV electron encounters a barrier 5.0 eV high. What is the
probability that it will tunnel through the barrier if the barrier
width is (a) 1.00 nm and (b) 0.50 nm?

SOLUTION

IDENTIFY and SET UP: This problem uses the ideas of tunneling
through a rectangular barrier, as in Figs. 40.19 and 40.20. Our tar-
get variable is the tunneling probability T in Eq. (40.42), which
we evaluate for the given values E = 2.0 eV (electron energy),
U = 5.0eV (barrier height), m = 9.11 X 10731 kg (mass of the
electron), and L = 1.00 nm or 0.50 nm (barrier width).

EXECUTE: First we evaluate G and k in Eq. (40.42), using

e

20eV
50eV

. 2.0eV
50eV

G 3.8

=]
Uy— E=50eV —20eV=30eV=48x10"]

~ V2(9.11 X 107 kg)(4.8 X 1071°J)
1.055 X 107#7J-s

K =89 X 10°m™!

(@ When L = 1.00nm = 1.00 X 1077 m, we have 2kxL =
2(89 x 10°m N(1.00 X 10°m) = 17.8 and T = Ge L =
3Rer 0 TG

(b) When L = 0.50 nm, one-half of 1.00 nm, 2«L is one-half
of 17.8, or 8.9. Hence T = 3.8¢ 3 4 5.2 X 107~

EVALUATE: Halving the width of this barrier increases the tun-
neling probability T by a factor of (5.2 X 1074)/(7.1 X 107%) =
7.3 X 10°, or nearly ten thousand. The tunneling probability is an
extremely sensitive function of the barrier width.
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11.4.2 Scanning Tunneling Microscopy

A newer technique which has had great success in obtaining images of atomic
structures on (typically graphite or silicon) surfaces is scanning tunneling micro-
scopy’ (STM). A schematic representation of the physics involved is shown in
Fig. 11.14:

1. Two metal electrodes are placed close together (often only A’s apart), one
being the sample while the other is the tip.

2. Their Fermi surfaces differ and electrical equilibrium is reached only when
enough electrons have tunneled through the junction (from left to right in
this case). The resulting charge separation results in an electric field in the
vacuum region between the electrodes.

3. An external voltage difference is applied to the tip shifting the Fermi energies
again and allowing electron tunneling to occur.

As the tip is scanned over a plane surface, feedback circuits monitor the tunneling
current, adjusting the tip height to maintain it at a constant value. The resulting
height profile provides a map of the surface.



(a) Evac

Figure 11.14. Schematic representation of the energy levels
relevant for a scanning tunneling microscope (STM).

Figure 11.15. Typical geometry of the tip of an STM probe. X

An estimate of the lateral resolution possible with this instrument can be made
by assuming a simple shape for the STM tip probe as in Fig. 11.15. Assuming
a parabolic probe with radius of curvature R of say 1000 A, one finds a current
profile as a function of distance away from the closest point d given by

—2(d+x*/2R)«

I(x) x e x e XKIR o X’ (11.52)

where p = /R/x; typically k ~ \/2mW/h2 ~ 1A~". This familiar Gaussian
distribution has a spread in lateral position given by Ax = p/+/2 ~ 20A.
As mentioned above, even smaller tip sizes are possible, but because of the
exponential sensitivity of the tunneling current to the tip-to-surface distance d,
it can well be the case that the best images arise from the tunneling from a very
few surface atoms forming an atomic-scale ‘dimple’ closest to the surface.
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The approximate expression for the ratio of transmitted flux to incident flux, |7 is
an extremely sensitive function of the width of the barrier, and of the amount by which
the barrier exceeds the incident energy, since

2m
Ka=a |25 (Vo — E) (4-41)

In general, the barriers that occur in physical phenomena are not square, and to dis-
cuss some applications, we must first obtain an approximate expression for the transmis-
sion coefficient |T|* through an irregularly shaped barrier. The proper way to do this,
given the fact that there is no exact solution available for most potentials, is through the

Wentzel-Kramers—Brillouin (WKB) approximation technique.! Our discussion will be

less matnematical.

; \
/Z \\
/ AN Figure 4-4 Approximation of
a smooth barrier by a
e juxtaposition of square

potential barriers.
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in which the energy dependent factor 2« multiplies the width of the barrier 2a. The proce-
dure we adopt is to treat a smooth curved barrier as a juxtaposition of square barriers, as
shown in Fig. 4-4. If the transmission probability for each barrier is small, the overall
probability is the product of the individual ones. Equivalently the overall transmission co-
efficient is a product of the transmission coefficients of the individual barriers. In effect,
when most of the flux is reflected by a single barrier, the transmission through each

“slice” is an independent, improbable event. We may therefore write, approximately

T T |7 = 3 In|Tuel? = =23 Ax ),
\\ slices n
N
N = =2 f dx\N2m(V(x) — E)K?
\ barrier

In the “slices” Ax, is the width and (k) is the average value of « for that slice of the bar-
rier. In the last step, a limit of infinitely narrow barriers was taken. It is clear from the ex-
pression that the approximation is least accurate near the turning points, where the energy
and potential are nearly equal, since there (4-36) is not a good approximation to (4-35). It
is also important that V(x) be a slowly varying function of x, since otherwise the approxi-
mation of a smooth barrier by a stack of square ones is only possible if the latter are nar-
row. However, there (4-36) is again a poor approximation. A proper treatment using the
WKB approximation includes a discussion of the behavior near the turning points. For our
purposes it is a fair approximation to write

-2 [ dx |20 -E) (4-43)

PT~8

where the integration is over the region in which the square root is real.

(4-42)
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A subject which is often discussed in modern physics courses is the photoelectric
effect in which electrons are emitted from a metal by the absorption of sufficiently
energetic photons. The effect is illustrated in Fig. 11.10(a) where the Fermi
energy of the filled electron sea is still an energy W below the threshold for a free
particle; W is often called the work function of the metal. A photon of energy E,
can extract an electron from the sea provided that E, > W, with any remaining
energy transferred to the electron as kinetic energy. Such experiments provide

V(x)~W — eEx
(a) (b)

Y W — eex

Vacuum Metal Metal Vacuum

Figure 11.10. (a) Allowed electron states for a metal showing the filled Fermi sea and the photoelectric
effect; (b) An external electric field is applied illustrating the triangular barrier giving rise to field emission.

A completely different form of electron emission which relies instead on a
purely classical electric field, but which makes use of quantum tunneling, is
field emission. In this case, shown in Fig. 11.10(b), an external electric field £ is
applied to the sample; electrons at the top of the sea can now tunnel through the
triangular-shaped potential barrier. In this simple approximation, the probability
of tunneling corresponding to Eqn. (11.49) is (P11.8)



external electric field €. This phenomenon is described as cold emission. It occurs be-
cause the external field changes the potential seen by the electron from a macroscopically
wide barrier of height W to one described by W — ¢éx, where x is the distance from the
wall of the box (Fig. 4-5b). The change creates a barrier of finite width, and electrons can
tunnel through it. We define the most easily removed electrons as having energy £ = 0.
This then gives the transmission coefficient as

W-eéx

ox Figure 4-5 (a) Electronic
E=0 levels in metal. We set the
energy of the highest level
E = 0. (b) Schematic sketch
of how the potential is
altered by an external

{a) (b) electric field.

4—2—)

FEEREREEE e

V(ia)~W —e€Ea =0

where a is the width of the barrier given by

v -
a oZ (4-45)

The integral in (4-44) is easily evaluated. It leads to the result

P~ Ce—‘*—;{?/mWaZ/h2 _ Ce'%ﬁ mw? /R (4-46)

The Fowler-Nordheim formula, as (4-46) is called, describes emission only qualitatively
One effect, which is easily included, is the additional attraction of the electron to its image
charge, which acts to pull it back to the plate. The other effect, much harder to handle, is
that there are surface imperfections, which change the electric field locally, and since €
appears in the exponent (in @) this can make a large difference.



triangular-shaped potential barrier. In this simple approximation, the probability
of tunneling corresponding to Eqn. (11.49) is (P11.8)

4 [2mW3 1 &o
Pr = exp 3V 2 e = exp —z (11.50)

This expression shows the strong dependence on the local value of the work
function W at the surface. The resulting electron current due to quantum
tunneling should be directly proportional to this probability, namely

&
I = Tye /¢ or log(I) = log(Ip) — ?O (11.51)

We compare this prediction with some of the data from one of the original

experiments in Fig. 11.11.

104

106

| (Amps)

1078

10—10

1 15 2 25
1/E (1/(VIm) 1078)

Figure 11.11. Semilog plot of tunneling current, /, versus 1/E€ where £ is the applied electric field,
illustrating field emission. The data are taken from Millikan and Eyring (1926).



This effect is also used as the basis of an imaging device called the field ion
microscope” (FIM ), which was the first microscope to achieve atomic resolutions
enabling one to “see” individual atoms. The device works roughly as follows:

A sharp, metallic tip with radius of curvature in the range 100 to 200 A is
placed in a vacuum and charged to a large voltage, typically 1-20 kV; this
process itself helps to smooth the surface by selective field ionization of the
metal atoms to what can be called “atomic smoothness”.

¢ A very dilute gas of noble gas atoms (often helium) is introduced; this is used
as the imaging gas. These atoms are adsorbed onto the surface of the probe
due to dipole—dipole attractions to the tip atoms (remember that both atomic
species are initially neutral).

® The image gas atoms, once attached to a tip atom, can be ionized via field
emission, losing an electron to the tip; the resulting positively charged ions
are then accelerated by the electric field toward a phosphorescent screen some
tens of centimeters, away forming the image. A schematic representation of
the process is shown in Fig. 11.12 and an FIM image is shown in Fig. 11.13.

* In this device, the electron tunneling serves only to initiate ion formation and
the electrons themselves do not participate in the image formation. In the
original field emission microscope, the electrons emitted via field ionization
were used to image the surface; this process relied on the local variations of

Q Metal atom
Electric field

»
A O  Helium (imaging) atom

Charged helium atom

O O R ot
O v Do

Figure 11.12. Schematic representation of field ion microscope. The metal atoms (large circles) forming
the surface of the smooth probe tip attract (via dipole—dipole forces) the atoms of the imaging gas (small
circles are helium). Once bound, electrons from the He can tunnel into the tip via field emission. The resulting
charged ions travel along the electric field lines (the tip is held at a large electric potential) and form an
image on the screen.



Figure 11.13. Field ion microscope image of a
tungsten tip of radius ~ 400 A. The original image
had a magnification of 3 million. (Photo courtesy of

T. Tsong.
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An alpha particle in this energy level can tunnel
through the Coulomb barrier and escape.
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tunneling. In this process, a heavy nucleus decays to a lighter one by the emission
of an a-particle, that is, the nucleus He*. Using a compact notation, the process
can be written as

Z yvA (Z-2) yy(A—4 2171.4
XA — YWY 4 He (11.53)

where Z, N, and A are, respectively, the numbers of protons, neutrons, and total
nucleons in the nuclear species denoted by X (the “parent”) or Y (historically
the “daughter” nucleus).

Because this is a two-body decay, the energy of the emitted « is determined
uniquely from conservation of energy and momentum, and can be calculated
from a knowledge of the masses of the parent and daughter nuclear species. For
the nuclei for which «-decay is an important decay mechanism, the range in
numerical values for the appropriate dimensionful parameters in the problem is
not very large,

R~2-4F, E,~2-8MeV, and Z ~ 50-100 (11.54)
while the observed lifetimes have been measured over an incredibly large range

T~ 107 s—10"1%5 (11.55)



A simple model for this process assumes that the «-particle moves in the
potential of the daughter nucleus, modeled by a combination of an attractive
square well (as in Section 8.2), along with the mutual Coulomb repulsion. This
can be written as

-V forr < R
Vi(r) = (11.56)

Z1ZhKe?/r forR < r
We would then take Z; = Z, = 2 and Z; = Z — 2 where Z is the charge of
the parent nucleus. This potential is illustrated in Fig. 11.16 and the a-particle
is assumed to have positive energy E, equal, to its observed final kinetic energy;
the model pictures the a-particle as “rattling around” inside the nucleus with a
small (exponentially so) quantum tunneling probability of escaping each time

it “hits” the Coulomb barrier. The tunneling probability for this process is then

/ Ke?Z,Z,r




it “hits” the Coulomb barrier. The tunneling probability for this process is then
given from Eqn. (11.49) by

[2 Z\ K| :
PT=€XP|: h/;/ \/ 1 £2¢ —EJ — ¢ 20 (11.57)

where the factor in the exponential (G) is known as the Gamow factor. The
classical turning points are taken to be

a=R and b= —— (11.58)

and we have used the reduced mass u as is appropriate for a two-body problem;
since the daughter nucleus is much heavier than the «-particle, however, one has
i ~ mg. The Gamow factor can be written in the form

2uct 1 1
G =7 Za, | LS f dy = —1 (11.59)
E, J.2 n

where @ = Ke?/hc as always and w? = R/b. The integral can be done in closed

form giving
1
1
/ dn |——1= % — sin” Hw) — Vol (1 — w?)
w? 1

\J
%fora)=\/b/R <<1 (11.60)

One then has very roughly that

(Z-12)
26~ 4 (11.61)

v Ey(MeV)




The decay lifetime itself can be estimated by noting that there is roughly an
e~ 20 probability of a tunneling “escape” every time the o “hits” the electrostatic
barrier. The time between such ‘escape attempts’ can be approximated as

2R 2E, 1
To~ == where v~ |—= =~ —¢ (11.62)

and R ~ 5-8 F is a typical (heavy) nuclear radius; this gives Ty &~ 107%!s,
which is indeed a typical nuclear reaction time. The lifetimes in this simple

picture then scale as

- (Z—-2)
= Tpet?© | ~ log(Ty) + 4
T 0€ or log(7) og(1p) Oy

This behavior is most easily studied by examining the «-decay lifetimes of dif-

(11.63)

ferent isotopes of the same element (so that the value of Z is fixed and only E,
varies). We plot the lifetimes for several such series (on a log scale) versus 1/+/E,
in Fig. 11.17 (a so-called Geiger—Nuttall plot) and note the reasonable straight
line fits. The simple approximations made here can be refined,” but they provide
convincing evidence for the importance of quantum tunneling effects in nuclear
decay processes.



HH
- O U (Z=92)
1015 |— + Fm (Z=100)
= X Po (Z=84)
i & Th (Z=90)
1010 __
@ .
= 105 I
1 I
10° |— &4 | | |
| III | | 1 1 | 11 | | | | | | |
0.3 0.35 0.4 0.45 0.5

(E (MeV)~12

Figure 11.17. Semilog plot of «-decay lifetime (z in seconds) versus 1/+/E4 (in MeV) for four different
radioactive decay series, the so-called Geiger—Nutall plot. The data are taken from a recent edition of the
Chart of the Nuclides (Walker (1983).)

YA
T = Toet?Y or log(t) ~ log(Tp) + 4 ( ) (11.63)
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Tunneling is important in nuclear physics. Nuclei are very complicated objects, but under
certain circumstances it is appropriate to view nucleons as independent particles occupy-
ing levels in a potential well. With this picture in mind, the decay of a nucleus into an a-
particle (a He nucleus with Z = 2) and a daughter nucleus can be described as the
tunneling of an a-particle through a barrier caused by the Coulomb potential between the
daughter and the a-particle (Fig. 4B-1). The a-particle is not viewed as being in a bound
state: if it were, the nucleus could not decay. Rather, the a-particle is taken to have posi-
tive energy, and its escape is only inhibited by the existence of the barrier."

Vir)

Figure 4B-1 Potential barrier for a
decay.
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G= 2(%) f ar.| 4;2; —E (4B-2)
R

where R is the nuclear radius® and b is the turning point, determined by the vanishing of
the integrand (4B-2); Z, is the charge of the daughter nucleus, and Z, (= 2 here) is the
charge of the particle being emitted. The integral can be done exactly

R G N

At low energies (relative to the height of the Coulomb barrier at r = R), we have b => R,
and then

_ 2 (2mZ,Z,e’b\'"?| = |R
it

with b = Z,Z,e*/4me E. If we write for the a-particle energy E = mv*/2, where v is its
final velocity, then

 2mZ,Z,¢

G=
4mreshv

= 2mz,zl(,—‘j) (4B-5)

The time taken for an a-particle to get out of the nucleus may be estimated as fol-
lows: the probability of getting through the barrier on a single encounter is e~“. Thus the
number of encounters needed to get through is n = €. The time between encounters is of
the order of 2R/v, where R is again the nuclear radius, and v is the a velocity inside the
nucleus. Thus the lifetime is

(4B-6)




The velocity of the a inside the nucleus is a rather fuzzy concept, and the whole picture is
very classical, so that the factor in front of the ¢® cannot really be predicted without a
much more adequate theory. Our considerations do give us an order of magnitude for it.
For a 1-MeV a-particle,

— /§= /E= /#z 6
v = C o 3% 10% 2% 640 7.0 X 10° m/s

so that one predicts, for low energy a’s, the straight-line plot

4
VEMeV)

with the constant in front of the order of magnitude 27-28 when 7 is measured in years in-
stead of seconds. A large collection of data shows that a good fit to the lifetime data is ob-
tained with the formula

(4B-7)

log,o % = const — 1.73

1 Z
logoy7z =6 —C—= (4B-8)

VE
Here C, = 1.61 and C, lying between 55 and 62. The exponential part of the fit differs
slightly from our derivation, but given the simplicity of our model, the agreement has to
be rated as good.

For larger « energies, the G factor depends on R, and with R = r,A'”, one finds that
rp is a constant—that is, that the notion of a Coulomb barrier taking over the role of the
potential beyond the nuclear radius has some validity. Again, simple qualitative consider-
ations explain the data.




