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Cosmic Microwave Background Radiation CMB T &5 = HE &)
Penzias and Wilson found CMB accidentally in 1965 and won the 1978 Nobel
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The 15 meter Holmdel horn antenna at Bell Telephone Laboratories in Holmdel,

New Jersey was built in 1959 for pioneering work in communication satellites for
the NASA ECHO 1.
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CMB is a blackbody radiation at 2.725K -
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Cosmic Microwave Background Spectrum from COBE

COBE Data +—+—
Black Body Spectrum
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Edwin Hubble 1889-1953







The 100-inch (2.5 m) Hooker telescope
located at Mount Wilson Observatory,

California, was the world's largest telescope
from 1917 to 1949.




The mirror of the Hooker telescope
on its way up the Mount Wilson Toll
Road on a Mack Truck in 1917.

Workmen assembling the polar axis
of the Hooker telescope.
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Edwin Hubble Papers/Courtesy of Huntington Library, San Marino, Calif.

This glass side of a photographic plate shows where Hubble
marked novas. The red VAR! in the upper right corner marks
his discovery of the first Cepheid variable star — a star that
told him the Andromeda galaxy isn't part of our Milky Way.



A two-prism spectrograph

W. W. Campbell with a
36-inch spectroscope

Vesto Slipher & spectrograph

Source: The University of Virginia
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3C 273 1s a quasar located in the constellation Virgo. It was the first quasar ever to be identified.
It 1s the optically brightest quasar in our sky and one of the closest with a redshift, z, of 0.158.
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Absorption lines in the visible spectrum of a supercluster of distant
galaxies (right), as compared to absorption lines in the visible

spectrum of the Sun (left). Arrows indicate redshift. Wavelength
increases up towards the red and beyond (frequency decreases).
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Messier 58 (also known as M58 and NGC 4579) is an intermediate barred spiral

galaxy with a weak inner ring structure located within the constellation Virgo, Mes5|e 2t

approximately 68 million light-years away from Earth.®ll'% |t was discovered by
Charles Messier on April 15, 1779 and is one of four barred spiral galaxies that
appear in Messier's catalogue.[''[12113][14][15]Note 1] \58 s one of the brightest

(161171 From 1779 it was arguably (though unknown at

galaxies in the Virgo Cluster.
that time) the farthest known astronomical object!'®! until the release of the New
General Catalogue in the 1880s and even more so the publishing of redshift

values in the 1920s.

Early observations iedi)

Charles Messier discovered Messier 58, along with the elliptical galaxies Messier

59 and Messier 60, on April 15, 1779.['%l M58 was reported on the chart of the Observatlon data (J2000'epoch)

- . 1
Comet of 1779 as it was almost on the same parallel as the star Epsilon Virginis. Constellation  Virgol'

[11[19] Messier described M58 as a very faint nebula in Virgo which would Right ascension 12" 37™ 43.522°7]
disappear in the slightest amount of light he used to illuminate the micrometer Declination +11° 49’ 05.498"17]
wires.[''2% This description was later contradicted by John Herschel's Redshift 0.00506/<I1%!
observations in 1833 where he described it as a very bright galaxy, especially Heliocentric 1517 £ 1 kmysf2I!

towards the middle. Herschel's observations were also similar to the descriptions radial velocity

of both John Dreyer and William Henry Smyth who said that M58 was a bright Distance 21 megaparsecs (68 million

ight- [2][4]
galaxy, mottled, irregularly round and very much brighter toward the middle.!'"] lighit;yoars)

- - H + K Apparent 9.71%

itud

Virgo 1,200 kms™’



Messier 87

Article Talk

From Wikipedia, the free encyclopedia

Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87)
is a supergiant elliptical galaxy in the constellation Virgo that contains several
trillion stars. One of the largest and most massive galaxies in the local universe,®!
it has a large population of globular clusters—about 15,000 compared with the
150-200 orbiting the Milky Way—and a jet of energetic plasma that originates at
the core and extends at least 1,500 parsecs (4,900 light-years), traveling at a
relativistic speed. It is one of the brightest radio sources in the sky and a popular
target for both amateur and professional astronomers.

The French astronomer Charles Messier discovered M87 in 1781, and cataloged it
as a nebula. M87 is about 16.4 million parsecs (53 million light-years) from Earth
and is the second-brightest galaxy within the northern Virgo Cluster, having many
satellite galaxies. Unlike a disk-shaped spiral galaxy, M87 has no distinctive dust
lanes. Instead, it has an almost featureless, ellipsoidal shape typical of most giant
elliptical galaxies, diminishing in luminosity with distance from the center. Forming
around one-sixth of its mass, M87's stars have a nearly spherically symmetric
distribution. Their population density decreases with increasing distance from the
core. It has an active supermassive black hole at its core, which forms the primary
component of an active galactic nucleus. The black hole was imaged using data
collected in 2017 by the Event Horizon Telescope (EHT), with a final, processed
image released on 10 April 2019.131 In March 2021, the EHT Collaboration
presented, for the first time, a polarized-based image of the black hole which may
help better reveal the forces giving rise to quasars.[']

The galaxy is a strong source of multi-wavelength radiation, particularly radio
waves. It has an isophotal diameter of 40.55 kiloparsecs (132,000 light-years), with

A Aiffiina Analantian AnviAalanAa that AviAanAas A A radinie Af alAnit 1EN LilanAava~nan

Xp 60 languages vV

Read Edit View history Tools v

Coordinates: @ 121 30™ 49.45, +12° 23’ 28"

Messier 87

Messier 87, with the blue plasma jet of its
galactic core clearly visible (composite image
of observations by the Hubble Space
Telescope in visible and infrared light)

Observation data (J2000 epoch)

Constellation Virgo

Right ascension 12" 30™ 49.4233g5!']
Declination +12° 23 28.0439"1"]
Redshift 0.00428 + 0.00002!?!

Heliocentric radial 1,284 + 5 km/s@
velocity

Distance 16.4 + 0.5 Mpc

(53.5 + 1.6 Mly)[°]
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This galaxy lies in the Hydra Supercluster. It is located at
LEDA 25177 (MCG+01- z=0.2

B1950.0 08" 55™ 48 +03° 21’ and is the BCG of the fainter
1951-1960
23-008)

(V=61000 km/s) | Hydra Cluster Cl 0855+0321 (ACO 732).[761[99][100][101][102][103]
[104][105]

3,960,000,000

Hydra 61,000 kms™’

v~0.2¢c
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Article Talk

/| JADES-GS-214-0

From Wikipedia, the free encyclopedia
- .
JADES-GS-z14-0 is a high-redshift Lyman-Break galaxy in the constellation

Fornax that was discovered in 2024 using NIRcam as part of the JWST Advanced
Deep Extragalactic Survey (JADES) program.l'l2] |t has a redshift of 14.32,
making it the most distant galaxy and astronomical object ever discovered.

Discovery [ edit]

JADES-GS-z14-0 was observed using the James Webb Space Telescope's Near-
Infrared Spectrograph (NIRSpec) in 2024,1%] and it measured a redshift of 14.32,[“!
placing the galaxy's formation at an estimated 290 million years after the Big Bang.
5] Its age, size, and luminosity added to a growing body of evidence that current
theories of early star and galaxy formation are incomplete.[®!

JADES-GS- 4-0, as seen by NIRCam
Observation data (J2000 epoch)

Characteristics [edit;

JADES-GS-z14-0 is 1600 light years wide and very luminous.®! Spectroscopic Constellation Fornax
analysis revealed the presence of strong ionized gas emissions, including Right ascension 03" 32™ 36.89°
hydrogen and oxygen.*] Declination —27° 46" 49.33"
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Lemaitre# i (H A 2B — e B HBE T | Expanding Universe !

Georges Lemaitre 1894-1966
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| +1896 - 1965

orges .

* Physicist and priest
» Father of cosmology

*He united Einstein’s
equations of general relativity
and Hubble's observations

»Proposed the ‘primeval atom
theory’ of the universe - a
precursor to the The Big
Bang’ theory
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Alexander Friedmann 1888-1925
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On the curvature of space
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Negatively curved
universe

Flat universe

Positively curved
universe
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Negative Curvature Models: k = -1, £; > 0 (infinite space)
A=0

A

Flat Models: k£ = 0, €; = 0 (infinite space)

Includes the
concordance
model

»
L

Positive Curvature Models: k = 1, € < 0, (finite space)

Eddington-

Lemaitre \
) “Einstein
Lemaitre nstein static

preferred”

Classification of Friedmann Models
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The results concerning the non-stationary world, contained in
Friedmann’s paper, appear to me suspicious A 4%¢. In fact, it turns
out the solution given in it does not satisfy the equation of GR. £ i2
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&.Eﬁiﬁ 1% AR H O AY583%: T am convinced that Mr. Friedmann’s
result are both correct and clarifying.

BERNITHESFMNRR - FEMRESERNERT > HEALT ¢
”a physical relevance can hardly be ascribed ({REEE H YR HH EEE

Bl ) 7 B TA] o BRI T -
ERAEERYHENE R, > FriedmannY X ZEH +HEE 2 H A5 -



BRI 1927 S5 & N E MY BN RE T HVAE R

EREHEE - I AE > E{EE R E K+ Srabominable
(disgusting & A\ FREERY ) g A St EFETHIRA -



e
LA
H L
i

Albert A. Michelson (center) with (left to right) M.L.
Humason, Edwin Hubble, C.E. St. John, Albert
Einstein, WW. Campbell, and W.S. Adams in the
library of the Mount Wilson Observatory, Pasadena,
California, in early 1931.



On a visit to the Mount Wilson Observatory
near Pasadena in 1931 :
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WRONG: Because receding galaxies are moving
through space and exhibit a Doppler shift.

Inthe Doppler
effect, agalaxy’s
movement away
from the observer
stretches the
light waves,
making them
redder (top). The
wavelength of
light then stays
the same during
itsjourney
through space
(middle).The
observer detects
the light,
measuresits
Doppler redshift
and computes the
galaxy velocity
(bottom).
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From Tokyo Skytree's observatory, researchers prove time
passes faster at a high altitude

A message reading "Together we can all win" is displayed on Tokyo Skytree after Prime Minister Shinzo Abe
declared a state of emergency to fight the new coronavirus, in Tokyo on April 7. | REUTERS

F PRINT # SHARE ARTICLE HISTORY

A Japanese team of researchers has shown that time at Tokyo Skytree’s
observatory — around 450 meters above sea level — passes four
nanoseconds faster per day than at near ground level.

The finding, based on extremely precise “optical lattice clocks” that only go
out of synch by one second every 16 billion years, proves Albert Einstein’s
general theory of relativity, which predicts that clocks in a strong gravitatiortet
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Gravitational Redshift

The finaltest proposed by Einsteinin 1916 was the
gravitational redshift. This was finally measured by the
Pound-Rebka experimentin 1959 by firinggammarays up
and down a 22m tower at Harvard.

Measuring a frequency change of 1 part in 20%3, their
measurement agreed with the Einstein prediction with an
uncertainty of 20%. - .
Five yearslater, the accuracy was improvedto a 1% B
agreement and now measurements can accurately agree
to lessthan a percentaccuracy.




Performed in the tower at
the University of Harvard
Gamma rays of 14.4kEv
emitted from nuclear
tranistion of iron-57

*Detected at base of 22.6m

tower
Energy emitted hf,,,+mgH
Energy detected hf,




Harvard Tower Experiment

In just 22.6 meters,
the fractional

gravitational red shift
—— wen b
d e amcine & ar y

57 P VO[I + Lh]
gamma photons Fe source c2
dropped is just4.92 x 10717 |
but the Mossbauer
effect with the 14.4
keV gamma ray from
won-57 has a gh
enough resolution to
detect that difference.

vy

[

226 m gamma photons

launched upward In the early 60's
57 physicists Pound,
% EX SHINES Rebka,and Snyder at

¥ - *'Fe detector the Jefferson Physical
Laboratory at
Harvard measured the

shift to within 1% of
the predicted shift.

By just using the expression for grawmtational potential energy near the Earth, and

using the m in the relativistic energy expression, the gain in energy for a photon
which falls distance his

AE = mgh = E, gh= !ﬁ,éfz g-22.6m
o5 i

AE =35x10"eV
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RIGHT: Because expanding space stretches all light waves as

they propagate.

Athen

Galaxies hardly
move through
space, sothey
emit light with
nearlythe same

directions (top]-
The wavelength
getslongerduring
thejourney,

because spaceis
expanding. Thus,
the light gradually
reddens (middle
and bottom].The
amount of

redshift differ
fromwhat
Doppler shift
would’produce.
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RIGHT: Because expanding space stretches all light waves as
they propagate.

Galaxies hardly
move through
space, sothey
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JADES-GS-z14-0 WRz(E ¢ 14.32 XA 5 languages v
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From Wikipedia, the free encyclopedia

JADES-GS-z14-0 is a high-redshift Lyman-Break galaxy in the constellation Segdey S J;ff'JADEs.Gs.zl4.o
Fornax that was discovered in 2024 using NIRcam as part of the JWST Advanced § ' ; Ly
Deep Extragalactic Survey (JADES) program.['2] |t has a redshift of 14.32,
making it the most distant galaxy and astronomical object ever discovered.

Discovery |eit]

JADES-GS-z14-0 was observed using the James Webb Space Telescope's Near-
Infrared Spectrograph (NIRSpec) in 2024,! and it measured a redshift of 14.32,[“!

placing the galaxy's formation at an estimated 290 million years after the Big Bang.

>lits age, size, and luminosity added to a growing body of evidence that current
theories of early star and galaxy formation are incomplete.[°!

JADES-GS-z14-0, as seen by NIRCam
Observation data (J2000 epoch)

Characteristics [edit]

JADES-GS-z14-0 is 1600 light years wide and very luminous.!®! Spectroscopic Constellation Fornax
analysis revealed the presence of strong ionized gas emissions, including Right ascension 03" 32™ 36.89°
hydrogen and oxygen.[! Declination —27° 46’ 49.33"

Redshift 14.32 +8gg
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Georges Lemaitre George Gamow
1894-1966 Belgium 1904-1968 Russia, US

the Cosmic Egg exploding at the moment of the creation



WHAT KIND OF EXPLOSION WAS THE BIG BANG?

WRONG: The big bang was like a bomb going off at a certain location in previously empty space.

In this view, the universe came into existence when matter exploded out from some particular location. The pressure was
highest at the center and lowest in the surrounding void; this pressure difference pushed material outward.

RIGHT: 1t was an explosion of space itself.

The space we inhabitisitself expanding. There was no center to this explosion; it happened everywhere. The density and
pressure were the same everywhere, so there was no pressure difference to drive a conventional explosion.
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86 Standard Cosmology

Fig. 3.11: The presently observable Universe at the Planck time, sssuming i = 0.4
(100 x magnification).
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Light and matter
are coupled
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COSMIC BLACK-BODY RADIATION*

One of the basic problems of cosmology is the singularity characteristic of the familiar
cosmological solutions of Einstein’s field equations. Also puzzling is the presence of mat-
ter in excess over antimatter in the universe, for baryons and leptons are thought to be
conserved. Thus, in the framework of conventional theory we cannot understand the
origin of matter or of the universe. We can distinguish three main attempts to deal with
these problems.

It has been pointed out by one of us (P. J. E. P.) that the observation of a temperature
as low as 3.5° K, together with the estimated abundance of helium in the protogalaxy,
provides some important evidence on possible cosmologies (Peebles 1965). This comes

Two of us (P. G. R. and D. T. W.) have constructed a radiometer and receiving horn
capable of an absolute measure of thermal radiation at a wavelength of 3 cm. The choice

R. H. Dicke
P. J. E. PEEBLES
P. G. RoLL
D.T. WILKINSON
May 7, 1965

PALMER PHYSICAL LABORATORY
PRINCETON, NEW JERSEY



THE ASTROPHYSICAL JOURNAL

VOLUME 142 NOVEMBER 15, 1965 NUMBER 4

THE BLACK-BODY RADIATION CONTENT OF THE UNIVERSE
AND THE FORMATION OF GALAXIES*

P. J. E. PEEBLES
Palmer Physical Laboratory, Princeton University, Princeton, N J.
Received March 8, 1965; revised June 1, 1965

ABSTRACT

A critical factor in the formation of galaxies may be the presence of a black-body radiation content
of the Universe. An important property of this radiation is that it would serve to prevent the formation
of gravitationally bound systems, whether galaxies or stars, until the Universe has expanded to a critical
epoch. There is good reason to expect the presence of black-body radiation in an evolutionary cosmology,
and it may be possible to observe such radiation directly.




The 2019 Physics P i
Laureates e B

The 2019 Nobel Prize in Physics are awarded ”for contributions to our
understanding of the evolution of the universe and Earth’s place in the
cosmos”, with one half to James Peebles “for theoretical discoveries in
physical cosmology” and the other half jointly to Michel Mayor and Didier
Queloz “for the discovery of an exoplanet orbiting a solar-type star.”
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Images tweeted by @NobelPrize




New perspectives on our place in the universe

The Nobel Prize in Physics 2019 rewards new understanding of the universe’s structure and history,
and the first discovery of a planet orbiting a solar-type star outside our solar system. This year'’s
Laureates have contributed to answering fundamental questions about our existence. What happened
in the early infancy of the universe and what happened next? Could there be other planets out there,
orbiting other suns?

James Peebles took on the cosmos, with its billions
of galaxies and galaxy clusters. His theoretical frame-
work, which he developed over two decades, starting
in the mid-1960s, is the foundation of our modern
understanding of the universe’s history, from the
Big Bang to the present day. Peebles’ discoveries
have led to insights about our cosmic surroundings,
in which known matter comprises just five per cent
of all the matter and energy contained in the universe.

The remaining 95 per cent is hidden from us. This is

a mystery and a challenge to modern physics.
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Cobe (COsmic Background Explorer)
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‘d‘% The Nobel Prize in Physics 2006
4 John C. Mather, George F. Smoot

Share this: FIEEAEY o
The Nobel Prize in Physics
2006

Photo: P. 1zzo Photo: ). Bauer
John C. Mather George F. Smoot
Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Physics 2006 was awarded jointly to John C.
Mather and George F. Smoot "for their discovery of the blackbody
form and anisotropy of the cosmic microwave background radiation”



Mather and George F. Smoot "for their discovery of the blackbody
form and anisotropy of the cosmic microwave background radiation"
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Mather and George F. Smoot "for their discovery of the blackbody

form and anisotropy qf the cosmic microwave background radiation”
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LARGE-SCALE BACKGROUND TEMPERATURE AND MASS FLUCTUATIONS
DUE TO SCALE-INVARIANT PRIMEVAL PERTURBATIONS

P.J. E. PEEBLES
Joseph Henry Laboratories, Physics Department, Princeton University
Received 1982 July 2; accepted 1982 August 13

ABSTRACT

The large-scale anisotropy of the microwave background and the large-scale fluctuations in the
mass distribution are discussed under the assumptions that the universe is dominated by very
massive, weakly interacting particles and that the primeval density fluctuations were adiabatic with
the scale-invariant spectrum P « wavenumber. This model yields a characteristic mass comparable
to that of a large galaxy independent of the particle mass, m , if m =1 keV. The expected
background temperature fluctuations are well below present observational limits.

Subject headings: cosmic background radiation — cosmology — galaxies: formation

The expected temperature anisotropy at intermediate
angular scales is given by equation (16). The rms
fluctuation in 7 smoothed over # = 10° in a sample of
size ® = 100° is

8T/T=w'/2~5X 107 (21)
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log(a)

Figure 5.8 The scale factor a as a function of time t (measured in units of the Hubble time),
computed for the Benchmark Model. The dotted lines indicate the time of radiation—matter

equality, a,,, = 2.9 x 1074, the time of matter-lambda equality, a,,, = 0.77, and the present
moment, a, = 1.

HiFriedman Eq. 7] DUG2 R FERUALLBIELRFE YR % © a(t)
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RIGHT: Because expanding space stretches all light waves as
they propagate.

Galaxies hardly
move through
space, sothey

emit light with

nearly the same . 3.960.000.000
wavelengthin all
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From Wikipedia, the free encyclopedia

JADES-GS-z14-0 is a high-redshift Lyman-Break galaxy in the constellation Segdey S J;ff'JADEs.Gs.zl4.o
Fornax that was discovered in 2024 using NIRcam as part of the JWST Advanced § ' ; Ly
Deep Extragalactic Survey (JADES) program.['2] |t has a redshift of 14.32,
making it the most distant galaxy and astronomical object ever discovered.

Discovery |eit]

JADES-GS-z14-0 was observed using the James Webb Space Telescope's Near-
Infrared Spectrograph (NIRSpec) in 2024,! and it measured a redshift of 14.32,[“!

placing the galaxy's formation at an estimated 290 million years after the Big Bang.

>lits age, size, and luminosity added to a growing body of evidence that current
theories of early star and galaxy formation are incomplete.[°!

JADES-GS-z14-0, as seen by NIRCam
Observation data (J2000 epoch)

Characteristics [edit]

JADES-GS-z14-0 is 1600 light years wide and very luminous.!®! Spectroscopic Constellation Fornax
analysis revealed the presence of strong ionized gas emissions, including Right ascension 03" 32™ 36.89°
hydrogen and oxygen.[! Declination —27° 46’ 49.33"

Redshift 14.32 +8gg
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Bose-Einstein and Fermi-Dirac Distribution
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Figure 9.2 Neutron-to-proton ratio in the early universe. The solid line assumes
equilibrium; the dotted line gives the value after freezeout. Temperature decreases, and
thus time increases, from left to right.
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We may remark at first that the building-up process was
apparently completed when the temperature of the neutron
gas was still rather high, since otherwise the observed
abundances would have been strongly affected by the
resonances in the region of the slow neutrons. According to
Hughes,? the neutron capture cross sections of various
elements (for neutron energies of about 1 Mev) increase
exponentially with atomic number halfway up the periodic
system, remaining approximately constant for heavier
elements,

Using these cross sections, one finds by integrating

The Origin of Chemical Elements

R. A. ALPHER¥

Applied Physics Laboratory, The Johns Hopkins University,
Silver Spring, Maryland

AND
H. BETHE
Cornell University, Ithaca, New York
AND
G. Gamow
The George Washington University, Washington, D. C.
February 18, 1948

various nuclear species
must have originated not as the result of an equilib-
rium corresponding to a certain temperature and density,
but rather as a consequence of a continuous building-up
process arrested by a rapld expansion and cooling of the

aamto this picture, >
er as a highly ¢
ral nuclear flu

R. A. Alpher «a

H. Bethe

JEgs. (1) as shown in Fig. 1 that the relative abundances of
various nuclear species decrease rapidly for the lighter
elements and remain approximately constant for the ele-
Iments heavier than silver. In order to fit the calculated
curve with the observed abundances® it is necessary to
fassume the integral of p.dt during the building-up period is
equal to 5X10* g sec./cm?.

On the other hand, according to the relativistic theory of
the expanding universe* the density dependence on time is
iven by p=108/f2. Since the integral of this expression
diverges at t=0, it is necessary to assume that the building-
up process began at a certain time #,, satisfying the
elation:

j: " (108/2)d=25 X 104, @)

which gives us #0220 sec. and po=2.5 X 10° g sec./cm?. This
result may have two meamngs (a) for the hlgher densmes

B
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Figure 9.3 The deuteron-to-neutron ratio during the epoch of deuterium synthesis. The
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Figure 3.8: Free electron fraction as a function of redshift.




+e” S H+y Recombination (% » [af S EZERFEAL |

p

BT AR RS | B R TR -

£ BB SR AE RS B P AR SR T (E AR
T ST AR ey Se 4y

m@%&@%@ﬁxiiﬁ%%mﬁgrf»%

RAZ1% - SCEVEER BT SR > 78 RyPhoton Decoupling -

YCIETFH T 28 H ETTE » FH A -
el > BBETRRE A FEEYERNLE - B

Light and
TD~027eV~3240K tD~380000yr alrg cto?:::vle?i‘atter

Dark matter evolves

independently: it starts

clumping and forming
a web of structures

particles collide less
frequently

., @

As the Universe expands,

Light and matter
separate
* Protons and electrons
form atoms

* Light starts travelling
freely: it will become the
Cosmic Microwave
Background (CMB)

I

°
~ [ ]
(]
~

-

&)
@ e

!

_. ~ e
b = et
o ®

‘e (&

[ J

e
-0

e

Last scattering of
light off electrons

2 Polarisation



recombination

T [eV]

T Iy ] =~

Boltzmann

neutral hydrogen

[T T T 11111

[
()
%)




DOF

EN MATTER l
ELECTROWEAK DOMINATION

Big Bang Nucleosynthesis BBN
Quark Hadron l

Transition

Hig Bang
Nurleasy nthesis
“

10'°K

rFormatioa of + Formation

Stracture  of Alams
Regins <« Decoupling o

'OJKI rrand

Recombination
Photon Decoupling

| K Termperature

Energy

'Gev  10%w  1Tev 16.¥ 1MV TieV lev l eV
t
e hY Bindi A
:s" ‘lbsul”‘ 1»9 n "kl:‘.:-'ng.y o Bindi:l:?:i:ngy
100 1w 100 105 Size
rl il A'J. N IJ Yo A '1 bl
1 mrn® 10%%nrn? 10 jasn’ 1Dgosm

3 "3 gmkm

M .
.\':rlrar @ lAlou cm
= Matler
=

1 10°10° 10%veen

“m 10.“"( lo.uuc IO'GO!(' 1m JO

|nk-n Density

Time

Bee  10'25ec 10'8,c¢

L-NOw

Galaxy Solar
Forms System
Forms«
2K Neulrino ¢
- ” Backgreeond
g H D" He", |H.D.’He,
- 'P e -Gl
N ‘He . Live He, Li

)

4+— — Ratio of Matter/Radiations5x lll.“ B 3

| SR
1

3K Microwave

i . Backgroand



15 BILLION
YEARS

PRESENT i
Light and matter
separate

- Protons and electrons
form atoms

» Light starts travelling
freely: it will become the
First Supernovae Cosmic Microwave
Background (CMB)

Galaxy and Star o
g Fovmayﬂon ..N bl .’
s : P) [ ] ‘. e
3 Ao~ o)
8 ®
; R A
3 :. e ..

Last scattering of
light off electrons

2 Polarisation

Light and matter
are coupled

Dark matter evolves
independently: it starts
clumping and forming
a web of structures

g
8
3
H
8
] e ®~0
B z..’..e.
B o~ 3 .
5 ...'..2‘.
[ ] [ J )
P 2% .
.'-o":
X PR
° oeme 8
L@ ®°

As the Universe expands,
particles collide less
frequently

’ivtltt% SR R S
VIR H IR AN REBN TR > TR AR -
/24 decoupling - FRAE R T ig i —#y S {BEMETHY = |



1,500 K

L
g
3QE A I 300K g
£ -
Photon Decoupling

Copyright © 2004 Pearson Education, publishing as Addison Weslay.

Photon Decoupling Z Hif » & SHEHNET 8T - FH 2 HMIHT -
ZA% > B iR A G T B > A A -
U T E B R B M ARER -



38E T Z 1R BRI » TIEE4R -

SR S 2R o SR 0N - BT e
BRI — KA s A T H s A 38 A HT
HBRIRAERR SR B BORAE B BT > oA — B DAt B R BK LRy ERHE £ -
Surface of last scattering £ & HH HI /&7 EAVEKTH > /2 S B eI -

Z = infinite

B R A T Y 2

Horizon
Observable

/ Universe
/ Universe

Transparent

Last
scattering

N

Earth

Scattering \“

Surface

~
-~

T —— -

FEEEKTE L > BEEIE 1 afe—KEi
BEERTE_EAEDT MR TR A BREIERZ AR T o SRR O £



BIPRAEERINFEHE =R - WU FRE R RIERTERRDL -
ﬁzﬁ'ﬁ%i@mﬁ%ﬁ’]w{% EEERY T ARH - Rt ECMBRYRZHUHTH |

(ME Big Bang 75,14,,

A
Formation of I HE
4 —

Z = infinite

/" Universe )
Transparent

We can only see
the surface of the

PRESENT cloud where light
13.7 Billion Years was last scattered
after the Big Bang

The cosmic microwave background Radiation’s
“surface of last scatter” is analogous to the
light coming through the clouds to our

eye on a cloudy day.

i BT NOTERITHL - SRR LAE AT -
CMBHIES M - (REA T TR 38 AE R, |




Cobe 1991

FHPEAEISE TR - HLE 138 (RFEATHY A |



Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

Inflation ;

Quantum
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

FHEMBNIE A A EERS HIPRERK - DINE R iR E S -









WMAP 2005










€=esa

PLANGIC: .

Looking back fo the daﬁl_l'.gqf_ﬁ_me :




The Planck one-year all-sky suruey Eesa (0 ESA, HFI and LFT consortia, July 2010
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Background (CMB) as observed by Planck 2013.
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Asymmetry in the average temperatures on opposite hemispheres of the sky
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#Kcmb Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 7. Maximum posterior CMB intensity map at 5’ resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same

statistical properties as the rest of the sky.

The 2015 Planck CMB temperature maps produced by
all four methods (see an example in Fig. 7) are signifi-
cantly more sensitive than those produced in 2013 (by a fac tor of 1.3).
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The anisotropies of the Cosmic Microwave Background (CMB) as observed by Planck 2015.
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ABSTRACT

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaitre
cosmological model with radiation and matter has been known for some time in the various limiting
situations. An exact quantitative calculation which traces the entire history of the density fluctuations is
lacking because the usual approximations of a very short photon mean free path before plasma re-
combination, and a very long mean free path after, are inadequate. We present here results of the direct
integration of the collision equation of the photon distribution function, which enable us to treat in detail
the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well
before recombination, we obtain a final spectrum of density perturbations after recombination. The
calculations are carried out for several general-relativity models and one scalar-tensor model. One can
identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius
¢t at recombination, and the other results from the linear dissipation of the perturbations prior to re-
combination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies,
the second with the large galaxies. We compute also the expected residual irregularity in the radiation
from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic
perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombina-
tion of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in
antenna temperature should be at least 67°/T = 0.00015.
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Figure 5. The angular size of spots in the CMB are determined by the geometry.




@ The curve shows how many
spots there are of each size in
the background radiation.

@B

The first peak shows that the universe is
geometrically flat, i.e. two parallel lines
will never meet.

The second peak shows that ordinary
matter is just 5% of the matter and
energy in the universe.

The third peak shows that 26% of the
universe consists of dark matter.

From these three peaks, it is possible to
conclude that if 31% (5%+26%) of the
universe is composed of matter, then
69% must be dark energy in order to fulfil
the requirement for a flat universe.
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The curve shows how many
spots there are of each size in
the background radiation.
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The first peak shows that the universe is
geometrically flat, i.e. two parallel lines
will never meet.

The second peak shows that ordinary
matter is just 5% of the matter and
energy in the universe.

The third peak shows that 26% of the
universe consists of dark matter.

From these three peaks, it is possible to
conclude that if 31% (5%+26%) of the
universe is composed of matter, then
69% must be dark energy in order to fulfil
the requirement for a flat universe.



6000

5000

4000

)

2

<

3000

DI [ut

2000

1000

600
300

-300
-600
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ence limits for the base ACDM model from Planck CMB power spectra, in combination with
') and external data (“ext,” BAO+JLA+H,). Nuisance parameters are not listed for brevity (they
cy Archive tables), but the last three parameters give a summary measure of the total foreground
or the three high-{ temperature spectra used by the likelihood. In all cases the helium mass fraction
rior mean Yp ~ 0.2453, with theoretical uncertainties in the BBN predictions dominating over the
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Table 9. Parameter 68 % confidence levels for the base ACDM
cosmology computed from the Planck CMB power spectra, in
combination with the CMB lensing likelihood (“lensing™).
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Figure 21.1: Confidence level contours of 68.3%, 95.4% and
19.7% in the Qp—Qn plane from the Cosmic Microwave
3ackground, Baryonic Acoustic Oscillations and the Union

3Ne Ia set, as well as their combination (assuming w = —1).
Courtesy of Kowalski et al. [22]]
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Fig.26. Constraints in the €,-Q, plane from the Planck
TT+lowP data (samples; colour-coded by the value of H,) and
Planck TT,TE.EE+lowP (solid contours). The geometric degen-
eracy between Qn and 4 is partially broken because of the ef-
fect of lensing on the temperature and polarization power spec-
tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO
(solid red contours). The red contours tightly constrain the ge-
ometry of our Universe to be nearly flat.
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Measurements of the universe don’t agree

on how fast it’s expanding. Could an extra
ingredient in the early cosmos explain the gap?
BY MARC KAMIONKOWSKI AND ADAM G. RIESS
ILLUSTRATION BY CHRIS GASH .
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| Asampling of Hubble Constant Estimates,
Organized by Measuring Method
Kllometers per second per 326 million light-years
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RESULTS

Over the years the distance ladder measurements of the Hubble constant
have converged at a value of 73 = 1 kllometers per second per megaparsec
(km/s/Mpc). The CMB method, on the other hand, gives an estimate of
675 +0.5 km/s/Mpc. The two values are too far apart to explain. Perhaps
there Is some overlooked error In the methods, or maybe they are telling us
our cosmological model Is Incomplete.



The Most Shocking Discovery in
Astrophysics Is 25 Years Old

A quarter of a century after detecting dark energy, scientists are still trying to figure
out what it is

| December 1, 2023

One afternoon in early 1994 a couple of astronomers sitting in an air-conditioned
computer room at an observatory headquarters in the coastal town of La Serena, Chile,
got to talking. Nicholas Suntzeff, an associate astronomer at the Cerro Tololo Inter--

Avnnarinan NMhonwmratarer and Dyvian Qohraidd sirha had wanantls anvanlatad hic Aantanal




