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4. Consider 7 non-relativistic identical particles in a three dimensional box of size

L x 2L x2L. such that the potential that acts each particle is given by V(x,y,z) = 0 for
0<x<L,atthesametime, 0 <y <2L and 0<2z<2L;and V(x,y,z) = o otherwise.
Here (x,y,z) is the Cartesian coordinate of the particle. Suppose that the mass of each
particle is m and assume that there is no interaction among particles, answer the
following questions.

(a) (12%) Suppose that the spin of these particles is 1/2. Find total energies and the
corresponding degeneracy of the system for the ground state, the 1st excited state and the
2nd excited state. '

(b) (8%) Suppose that the spin of these particles is 0. Find total energies of the system for
the ground state, the 1st excited state and the 2nd excited state. Find the degeneracy of
the 2nd excited state.



4. Two non-interacting identical fermions trapped in an infinite potential well with 0 < x < a. Write
down the ground state and first excited state wave functions for this two-fermion system. You need
to find the single particle wave function ¥(x,t) first and use x; (1) to denote the spin-up
(spin-down) state. You should also use proper index, e.g. x; and y;, to specify particle 1 state, and

write down all degenerate states. (20 points)
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16. Consider a free-electron gas in three dimensions. What is the relation between the total
energy (FEio) and the Fermi energy (E)?

(A) By x B} (B) By < BY?  (C) By x BY* (D) Eiw x Ey
(E) By ox EY*




Degeneracy Pressure

If the electron gas is compressed, the electrons are pushed closer to each other, and this
decreases the de Broglie wavelength and, equivalently, increases the kinetic energy. Thus

the compression is resisted, and the pressure resisting the compression is called the degen-
eracy pressure. It is given by
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The use of a degenerate electron gas model for a metal gives the correct order of magni-
tude for the bulk modulus B. For example, for copper we have n, = 8.47 X 10% elec-
trons/m’, so that B = 6.4 X 10'° N/m?. The experimental value is 14 X 10'® N/m?.
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Hydrostatic Equilibrium:
Stars as Self-Regulating Systems

* Energy 1s generated in the

. Hydrostatic Equilibrium
star's hot core, then carried
outward to the cooler G"_'
rawnty

surface.

* Inside a star, the inward
force of gravity 1s balanced .
by the outward force of &

creens hot
MradcAadl1Ilra



The main process is hydrogen fusion into helium:

O g
2 +vaww\_,.'y
" / 3He

+
1H / )Mkb""\-y 1H
ee
(a) Step1: (b) Step2:

« The 2H nucleus from the first step
collides with a third proton.
* A helium isotope (3He) is formed

* Two protons (hydrogen nuclei, 1H) collide.
* One of the protons changes into a neutron (shown
in blue), a neutral, nearly massless neutrino (v), and

a positively charged electron, or positron (e*). and another gamma-ray photon is

* The proton and neutron form a hydrogen isotope (ZH). released.
» The positron encounters an ordinary electron (e7),
annihilating both particles and converting tham inta

Screenshot
gamma-ray photons (vy).

\ ;
O+O+ )+
1 1
+ / 4 H H
+O He

3He

(c) Step3:

+ Two 3He nuclei collide.

¢+ A different helium isotope with two
protons and two neutrons (4He) is
formed and two protons are released.
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What happens to the cores of dead stars?

Hydrostatic equilibrium
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The two pressures balance, for a given value ot &V, when

1 ( 4m )UBG(Nm oy 523 (% )5/3‘/_5[3

S5\3 15m,\ 7
that 1s, when the radius of the star is R*,
R* = | — =|= ; 13-81
(477) v 128 Gm nt* N ( )

For a star of one solar mass,

2 X 10 kg

— — 57
— — . — = 12X 10
1.67 X 10 “" kg

and the radius of the degenerate star is R* = 1.1 X 10* km. The radius of a nondegenerate
star, the sun, is = 7 X 10% km!

Image of Sirius A and Siriu§ B taken b}’ th_e A comparison between the white dwarf IK Pegasi B (center),
Hupble Space Telescope. Sirius .B’ WhICh 1S4 its A-class companion IK Pegasi A (left) and the Sun (right).
white dwarf, can be seen as a faint point of light This white dwarf has a surface temperature of 35,500 K

to the lower left of the much brighter Sirius A.



If the mass is somewhat larger than a solar mass, the average energy of the electrons
increases. When the electrons acquire relativistic energies, our expression for the degener-
acy pressure changes drastically. In effect, the electron energy is no longer p*/2m,, but pc.
It can be shown (see Problem 12) that in this domain the degeneracy pressure also scales

as V™% and for a sufficiently large value of N, the gravitational pressure overcomes the
degeneracy pressure. As a consequence of this large net pressure, the reaction

e +tp—>ntvy

takes place. The neutrinos escape, since matter, even degenerate matter, is transparent to
them, and we are left with a neutron star. The degeneracy pressure of the neutrons, which
are also fermions, and thus also obey the exclusion principle, can be calculated in the same
way as the electron pressure, except that N, is replaced by N and m, by m,. We now obtain

. _ 81‘77'2 1/3 ﬁZ 15 i
R (]6) Gm?,N (13-82)

For a star with two solar masses, we end up with R = 10 km! If the mass (equivalently
N) is so large that the neutrons become relativistic, then there is no counterbalance to the
huge gravitational pressure, and a black hole forms.
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Hydrostatic equilibrium

In a neutron star neutron star
electrons are
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We see 1n the figure that only electrons within an
energy range of roughly kT of the Fermi surface can be excited—in
general they are excited above the Fermi surface by an energy of about

kpT.
APIZRER > TmRAE B LR H B RAE ERIR ~ AEZLIRTHEEI TS LERRR

E(T) = E(T = 0) + (3/2)[Vg(Er) (kpT))(kpT) + ...

Here Vg(EF) is the density of states near the Fermi surface (recall g is 08
the density of states per unit volume), so the number of particles close [
enough to the Fermi surface to be excited is Vg(EFr)(kgT), and the
final factor of (kpT') is roughly the amount of energy that each one gets
excited by. Here 7 is some constant which we cannot get right by such 02
an approximate argument (but it can be derived more carefully, and it ob——

turns out that ¥ = 72/3, see Ashcroft and Mermin).
We can then derive the heat capacity

C = OE /8T = kpg(Er)kpTV

which then using Eq. 4.11 we can rewrite as

(E)E)

The first term 1n brackets is just the classical result for the heat capacity
of a gas, but the final factor T/Tp is tiny (0.01 or smaller!). This is
the above promised linear 7' term in the heat capacity of electrons (see
Fig. 2.5), which is far smaller than one would get for a classical gas.




More Electrons in Metals:
Sommerfeld (Free
Electron) Theory

In 1925 Pauli discovered the exclusion principle, that no two electrons
may be in the exact same state. In 1926, Fermi and Dirac separately
derived what we now call Fermi-Dirac statistics.! Upon learning about
these developments, Sommerfeld? realized that Drude’s theory of metals
could easily be generalized to incorporate Fermi statistics, which is what
we shall presently do.

4.1 Basic Fermi—Dirac Statistics

Given a system of free? electrons with chemical potential? 1 the proba-
bility of an eigenstate of energy E being occupied® is given by the Fermi
factor (See Fig. 4.1)

np(B(E — 1)) = —

= FE=a T (4.1)

At low temperature the Fermi function becomes a step function (states
below the chemical potential are filled, those above the chemical po-
tential are empty), whereas at higher temperatures the step function
becomes more smeared out.

We will consider the electrons to be in a box of size V.= L? and,
as with our discussion in Section 2.2.1, it is easiest to imagine that

41In case you did not properly learn about chemical potential in your statistical physics
course, it can be defined via Eq. 4.1, by saying that p is whatever constant needs to
be inserted into this equation to make it true. It can also be defined as an appropriate
thermodynamical derivative such as p = 8U/ON |y, s with U the total energy and N
the number of particles or p = 8G/ON|r,p, with G the Gibbs potential. However,
such a definition can be tricky if one worries about the discreteness of the particle
number—since N must be an integer, the derivative may not be well defined. As a
result the definition in terms of Eq. 4.1 is frequently best (i.e., we are treating p as
a Lagrange multiplier).

5When we say that there are a particular set of N orbitals occupied by electrons, we
really mean that the overall wavefunction of the system is an antisymmetric function
which can be expressed as a Slater determinant of N single electron wavefunctions.
‘We will never need to actually write out such Slater determinant wavefunctions except
in Section 23.3, which is somewhat more advanced material.

1 Fermi-Dirac statistics were actually
derived first by Pascual Jordan in
1925. Unfortunately, the referee of the
manuscript, Max Born, misplaced it
and it never got published. Many peo-
ple believe that were it not for the fact
that Jordan later joined the Nazi party,
he might have won the Nobel Prize
along with Born and Walther Bothe.

2Sommerfeld never won a Nobel Prize,
although he was nominated for it 81
times—more than any other physicist.
He was also a research advisor for more
Nobel laureates than anyone else in his-
tory, including Heisenberg, Pauli, De-
bye, Bethe, Pauling, and Rabi.

3Here “free” means that they do not in-
teract with each other, with the back-
ground crystal lattice, with impurities,
or with anything else for that matter.

05 0 15

1.
E/E,

Fig. 4.1 The Fermi distribution for
kpT <« Ep. The dashed line marks the
chemical potential p, which is approxi-
mately Ep. At T = 0 the distribution
is a step, but for finite T it gets smeared
over a range of energies of width a few
times kpT'.



6As mentioned in Section 2.2.1, any
properties of the bulk of the solid
should be independent of the type of
boundary conditions we choose. If you
have doubts, you can try repeating all
the calculations using hard wall bound-
ary conditions, and you will find all the
same results (It is more messy, but not
too much harder!).

7Yes, Fermi got his name attached to
many things. To help spread the credit
around I've called this section “Basic
Fermi-Dirac Statistics” instead of just
“Basic Fermi Statistics”.

the box has periodic boundary conditions.® The plane wavefunctions
are of the form e®T where due to the boundary conditions k must
take value (27/L)(n1,n2,n3) with n; integers. These plane waves have
corresponding energies

B h2|k|2

2m

e(K) (4.2)

with m the electron mass. Thus the total number of electrons in the

system is given by

N =23 np(B(e(9 ~ 1) = 25 [ Ak ne(A(e9 —p) (43
k

where the prefactor of 2 accounts for the two possible spin states for
each possible wavevector k. In fact, in a metal, N will usually be given
to us, and this equation will define the chemical potential as a function
of temperature.

We now define a useful concept:

Definition 4.1 The Fermi energy, Er is the chemical potential at
temperature T = 0.

This is also sometimes called the Fermi level. The states that are filled at
T = 0 are sometimes called the Fermi sea. Frequently one also defines
a Fermi temperature Tp = Ep/kp, and also the Fermi wavevector kp
defined via B2
Ep=—F

(4.4)

2m

and correspondingly a Fermi momentum pp = hkp and a Fermi velocity”

vp = hkp/m, (4.5)

Aside: Frequently people think of the Fermi energy as the energy of the most
energetic occupied electron state in system. While this is correct in the case where
you are filling a continuum of states, it can also lead you to errors in cases where
the energy eigenstates are discrete (see the related footnote 4 of this chapter),
or more specifically when there is a gap between the most energetic occupied
electron state in the system, and the least energetic unoccupied electron state.
More correctly the Fermi energy, i.e., the chemical potential at 7' = 0, will be half-
way between the most energetic occupied electron state, and the least energetic
unoccupied electron state (see Exercise 4.6).

Let us now calculate the Fermi energy in a (three-dimensional) metal
with N electrons in it. At 7' = 0 the Fermi function (Eq. 4.1) becomes
a step function (which we write as ©. lLe., O(z) = 1 for z > 0 and
©(z) = 0 for z < 0), so that Eq. 4.3 becomes

B 174 B v |k|<kp
N = QW/dk O(Ep — e(k)) = QW/ dk.



The final integral here is just an integral over a ball of radius kp. Thus
the integral gives us the volume of this ball (47 /3 times the cube of the

radius) yielding
V 1
N =2—— (| -7k} 4.6
5 (7). o

In other words, at T' = 0 the electrons simply fill a ball in k-space of
radius kp. The surface of this ball, a sphere (the “Fermi sphere”) of

radius kr 1s known as the Fermi surface—a term more generally defined
as the surface dividing filled from unfilled states at zero temperature.

Using the fact that the density is defined as n = N/V we can rearrange

Eq. 4.6 to give
kp = (3n2n)1/3

and correspondingly
h2(37r2n)2/ 3

2m
Since we know roughly how many free electrons there are in a metal
(say, one per atom for monovalent metals such as sodium or copper), we
can estimate the Fermi energy, which, say for copper, turns out to be on
the order of 7 eV, corresponding to a Fermi temperature of about 80,000
K(!). This amazingly high energy scale is a result of Fermi statistics and
the very high density of electrons in metals. It is crucial to remember
that for all metals, Tr > T for any temperature anywhere near room
temperature. In fact metals melt (and even vaporize!) at temperatures
far far below their Fermi temperatures.

Similarly, one can calculate the Fermi velocity, which, for a typical
metal such as copper, may be as large as 1% the speed of light! Again,
this enormous velocity stems from the Pauli exclusion principle—all the
lower momentum states are simply filled, so if the density of electrons is
very high, the velocities will be very high as well.

With a Fermi energy that is so large, and therefore a Fermi sea that
is very deep, any (not insanely large) temperature can only make exci-
tations of electrons that are already very close to the Fermi surface (i.e.,
they can jump from just below the Fermi surface to just above with only
a small energy increase). The electrons deep within the Fermi sea, near
k = 0, cannot be moved by any reasonably low-energy perturbation
simply because there are no available unfilled states for them to move
into unless they absorb a very large amount of energy.

Ep = (4.7)
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4.2 Electronic Heat Capacity

We now turn to examine the heat capacity of electrons in a metal. Anal-
ogous to Eq. 4.3, the total energy of our system of electrons is given now
by
B = Gz [ ke nr(5(e() - 1)
(2m)3

= % /0°° Ak2dk e(k) np (B(e(k) — p))

where the chemical potential is defined as above by

N = s [ aknr () - ) = s [ " 4wk dke np(B(e(k) ).

(In both equations we have changed to spherical coordinates to obtain
a one-dimensional integral and a factor of 47k? out front.)
It is convenient to replace k in this equation by the energy € by using
Eq. 4.2 or equivalently
2em

h2

m
dk = | = d
2enz ¢

We can then rewrite these expressions as

k=

so that

Eiotal = VAOO de € g(e) np(B(e — p)) (4.8)

N

v " de a(e) np(Ble - 1)) (4.9)

2 2 2em m
de = ——dnk?dk=——4r (Z2) [ 2 4
9(€)de @m3 " (2m)3 ”( h2 ) 2en2

2
/2 (4.10)

where

is the density of states per unit volume. The definition® of this quantity
is such that g(€)de is the total number of eigenstates (including both
spin states) with energies between € and € + de.

From Eq. 4.7 we can simply derive (2m)%/2/h® = 3n%n /EI?’,-/ % thus we
can simplify the density of states expression to

g(e) = 2% (é) 1/2 (4.11)

which is a fair bit simpler. Note that the density of states has dimensions
of a density (an inverse volume) divided by an energy. It is clear that
this is the dimensions it must have, given Eq. 4.9 for example.

Note that the expression Eq. 4.9 should be thought of as defining the
chemical potential given the number of electrons in the system and the
temperature. Once the chemical potential is fixed, then Eq. 4.8 gives
us the total kinetic energy of the system. Differentiating that quantity
would give us the heat capacity. Unfortunately there is no way to do
this analytically in all generality. However, we can use to our advantage
that T' < TF for any reasonable temperature, so that the Fermi factors
np are close to a step function. Such an expansion was first used by
Sommerfeld, but it is algebraically rather complicated® (see Ashcroft
and Mermin Chapter 2 to see how it is done in detail). However, it is



not hard to make an estimate of what such a calculation must give—
which we shall now do.

When T' = 0 the Fermi function is a step function and the chemical
potential is (by definition) the Fermi energy. For small T, the step
function is smeared out as we see in Fig. 4.1. Note, however, that in
this smearing, the number of states that are removed from below the
chemical potential is almost exactly the same as the number of states
that are added above the chemical potential.!® Thus, for small T, one
does not have to move the chemical potential much from the Fermi
energy in order to keep the number of particles fixed in Eq. 4.9. We
conclude that p ~ Ef for any low temperature. (In more detail we find
that u(T) = Er + O(T/TF)?, see Ashcroft and Mermin Chapter 2.)

Thus we can focus on Eq. 4.8 with the assumption that p = Ep. At
T =0 let us call the kinetic energy!! of the system E(T = 0). At finite
temperature, instead of a step function in Eq. 4.8 the step is smeared
out as in Fig. 4.1. We see in the figure that only electrons within an
energy range of roughly kpT of the Fermi surface can be excited—in
general they are excited above the Fermi surface by an energy of about
kpT. Thus we can approximately write

E(T) = E(T =0)+ (7/2)[Va(EF)(kgT)](kpT) + .. ..

Here Vg(EF) is the density of states near the Fermi surface (recall g is
the density of states per unit volume), so the number of particles close
enough to the Fermi surface to be excited is Vg(Er)(kBT), and the
final factor of (kgT') is roughly the amount of energy that each one gets
excited by. Here 7 is some constant which we cannot get right by such
an approximate argument (but it can be derived more carefully, and it
turns out that ¥ = w2/3, see Ashcroft and Mermin).
We can then derive the heat capacity

C = 0E/OT = kpg(Er)kpTV

which then using Eq. 4.11 we can rewrite as

o= (2)(2)

The first term in brackets is just the classical result for the heat capacity
of a gas, but the final factor T/TF is tiny (0.01 or smaller!). This is
the above promised linear 7' term in the heat capacity of electrons (see
Fig. 2.5), which is far smaller than one would get for a classical gas.

This Sommerfeld prediction for the electronic (linear T') contribution
to the heat capacity of a metal is typically not too far from being correct
(see Table 4.1). A few metals, however, have specific heats that deviate
from this prediction by a factor of 10 or more. Note that there are
other measurements that indicate that these errors are associated with
the electron mass being somehow changed in the metal. We will discover
the reason for these deviations later when we study band theory (mainly
in Chapter 17).

(4.12)

10ince the Fermi function has a precise
symmetry around p given by np (8(E —
p) = 1—np(B(p — E)), this equiva-
lence of states removed from below the
chemical potential and states inserted
above would be an exact statement if
the density of states in Eq. 4.9 were in-
dependent of energy.

Uy fact E(T = 0) = (3/5)NEp,
which is not too hard to show. See Ex-
ercise 4.1.

Table 4.1 Low-temperature heat ca-
pacity coefficient for some metals. All
of these metals have heat capacities of
the form C = AT + oT3 at low tem-
perature. This table gives the mea-
sured experimental (exp) value and
the Sommerfeld theoretical (th) pre-
dictions for the coefficient + in units

of 10~4 J/(mol-K).

Material

Yexp “th
Lithium (Li) 18 7.4
Sodium (Na) 15 11
Potassium (K) 20 17
Copper (Cu) 7 5.0
Silver (Ag) 7 6.4
Beryllium (Be) 2 2.5
Bismuth (Bi) 1 50
Manganese (Mn) 170 5.2

The theoretical value is obtained by set-
ting the electron density equal to the
atomic density times the valence (num-
ber of free electrons per atom), then
calculating the Fermi temperature from
the density and using Eq. 4.12. Note
that Mn has multiple possible valence
states. In the theoretical calculation we
assume valence of one which gives the
largest possible predicted value of ~;p,.



(a) No electric field

The electron has frequent collisions with
ions, but it undergoes no net displacement.
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Net displacement

A net displacement in the direction
opposite to E is superimposed on the

random thermal motion.



s LAYHES:
et
Vg = E E

5Here we really mean the thermal av-
erage (p) when we write p. Since our
scattering is probabilistic, we should
view all quantities (such as the momen-
tum) as being an expectation over these
random events. A more detailed the-
ory would keep track of the entire dis-
tribution of momenta rather than just
the average momentum. Keeping track
of distributions in this way leads one
to the Boltzmann Transport Equation,
which we will not discuss.

7A related quantity is the mobility,
defined by v = pE, which is given
in Drude theory by p = er/m. We
will discuss mobility further in Section
17.1.1.

We consider an electron with momentum p at time ¢ and ask what
momentum it will have at time ¢t+dt. There are two terms in the answer.
There is a probability dt/7 that it will scatter to momentum zero. If it
does not scatter to momentum zero (with probability 1 —dt/7) it simply
accelerates as dictated by its usual equations of motion dp/dt = F.
Putting the two terms together we have

@a+ﬁ»:(1_§)@um4w@+0ﬁﬁ

or keeping terms only to linear order in dt then rearranging,®

a T
where here the force F on the electron is just the Lorentz force

F=—¢(E+vxB)

P _p_P (3.1)

One can think of the scattering term —p/7 as just a drag force on the
electron. Note that in the absence of any externally applied field the
solution to this differential equation is just an exponentially decaying
momentum

P(t) = Pinitiat € /™
which is what we should expect for particles that lose momentum by
scattering.

3.1 Electrons in Fields

3.1.1 Electrons in an Electric Field

Let us start by considering the case where the electric field is non-zero
but the magnetic field is zero. Our equation of motion is then

dp p

Y _eE-_ =

dt ¢ T.
In steady state, dp/dt = 0 so we have

mv =p = —eTE

WICH 772 Uhe Iass ol the electron and v 1ts velocity.
Now, if there is a density n of electrons in the metal each with charge
—e, and they are all moving at velocity v, then the electrical current is

given by )
e“tn
E
m

j=—env=

or in other words, the conductivity of the metal, defined via j = oE is

given by’
e’tn

g =

(3.2)

m .

By measuring the conductivity of the metal (assuming we know both
the charge and mass of the electron) we can determine the product of
the electron density and scattering time of the electron.
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