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Mass m = (548.57990946 + 0.00000022) x 10~° u
Mass m = 0.510998928 + 0.000000011 MeV
imge — my_|/m< 8x1077, CL = 90%
Gor + Go_|/e < 4x 1078
Magnetic moment anomaly
(g-2)/2 = (1159.65218076 + 0.00000027) x 10~
(8e+ — 8o-) / Baverage = (—0.5 £ 2.1) x 10712
Electric dipole moment d < 10.5 x 10728 ecm, CL = 90%
Mean life 7 > 4.6 x 1026 yr, CL = 90% [
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It has to be regarded as a defect of the wave function language for quantum mechanics that it

(e]

1s possible to write down wave functions or “states” that do not correspond to any physical reality.
This defect is remedied by methods of quantum field theory, which we will take up later in the course,
in which all states that one can write down are physical. Quantum field theory also incorporates the

exchange symmetry of the states in a natural way (there is no need to discuss exchange operators).
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13-2 IDENTICAL PARTICLES

There is compelling evidence that electrons are indistinguishable from one another. If this
were not so, then the spectrum of an atom—helium, say—would vary from experiment to
experiment, depending on “what kind” of electrons were contained in the sample under
investigation. In fact, no such variation has ever been observed. Similarly molecular and
nuclear spectra are always the same—indication that protons are indistinguishable, as are
neutrons. Similar evidence from high-energy physics indicates very strongly that other
particles—for example, pions—are indistinguishable. The same holds for photons, an im-
portant property utilized in lasers.

Indistinguishability is a purely quantum mechanical property: In classical mechan-
ics it is in principle possible to follow the orbits of all particles, so that they are never
really indistinguishable. We have learned that electrons are characterized by an inter-
nal quantum number, its spin. Thus a complete set of quantum numbers for the de-
scription of an electron must include the spin label. This is generally chosen to be the
value of the z-component of the spin, which has the value *#/2. This spin state will be
labeled by' o, which will be double-valued. What this means is that two electrons,
identical in every respect (except for the spin), can still be distinguished by their o-
value. A third electron with the same quantum numbers as the other two must have a
spin label that is identical to that of at least one of the other electrons. The existence of
the spin label has a further effect on the consequences of indistinguishability, which
we discuss next.

The Exchange Operator

A Hamiltonian for indistinguishable particles must be completely symmetric in the coor-
dinates of the particles. For a two-particle system, if the potential does not depend on the
spin labels, the Hamiltonian is

H= ;—‘ + 2— + Vix;, x,) (13-16)
V(xy, xp) = V(xg, x1) (13-17)

We write this symmetry symbolically as

H(1,2)=H(2,1) (13-18)



6. The 2Cy5 Molecule

Let us now consider the 2C, molecule, a homonuclear diatomic molecule in which both nuclei
have spin 0. This is a perfectly good diatomic molecule whose rotational spectrum can be analyzed
experimentally, but it does not form a gas like Hy or Ny because it is chemically reactive (the carbon
atoms like to form chains, rings, buckyballs, nanotubes, etc). Unfortunately there is no ordinary gas
of homonuclear diatomic molecules with nuclear spin 0 that serves our purposes (‘He is a noble gas
and does not form molecules in the ordinary sense, 60 has been excluded because of its unusual

electronic structure, other spin-0 isotopes are radioactive, etc). So we will work with 2Cs.

The Hamiltonian describing the vibrations and rotations of this molecule is (1), where the
potential V' has a minimum at some radius 79 (the bond length), creating a potential well that
supports bound states. The excitations in this potential well are approximately harmonic for low
quantum numbers, and correspond physically to the quantized vibrations of the molecule. The
molecule can also rotate, and the total quantized energy is approximately the sum of a vibrational
and a rotational contribution. See Eq. (16.82).

As usual with central force Hamiltonians, we may transform (1) from lab coordinates (x1,X2)
to center-of-mass and relative coordinates (R, r), defined in the case of equal masses by
X1 + X2

2 7 (23)

r =Xo —Xj.

R =

This is a special case of the transformation presented in Sec. 16.9, in which the two masses are equal.

Under this transformation the Hamiltonian (1) becomes
P
H=——+++V(r), (24)

where P is the momentum conjugate to the center-of-mass position R, and p is the momentum
conjugate to the relative position r, and where r = |r| is the distance between the two particles.
The mass M = 2m is the total mass of the system, while p = m/2 is the reduced mass. The
momentum P is physically the total linear momentum of the system (it is p1 + p2). We can write

this Hamiltonian as the sum of a center-of-mass and a relative term,

H=Hcwm + Hrels (25)
where )
P
H — 26
on =5 (26)
is a free particle Hamiltonian, and where
p2
Hyep = — +V(r). (27)
2u

As for the wave function, we may transform it also to the new coordinates (R,r). We will write

U(x1,%x2) = V(R,1). (28)




The Schrodinger equation for (24) separates according to the decomposition (25), so that energy
eigenfunctions have the form

U(R.1) = D(R)Y(r). (20)

where ®(R) is an eigenfunction of Heym and (r) is an eigenfunction of Hye;. The 2-particle Hilbert
space & is spanned by products of basis wave functions of this form, that is, it has the decompo-
sition

gtot = €CM ® grels (30)

in addition to the decomposition Eq. (9). We will write Eq. (29) in ket language as
W) = [®)]4), (31)

omitting the @ for simplicity. The eigenfunction ®(R) is a free-particle energy eigenfunction, which
we may take to be
®(R) = exp(iP - R/h), (32)

where P is the momentum eigenvalue. This plane wave is not the only choice for a free particle
energy eigenfunction, but it is a simple one. As for the relative energy eigenfunction ¢ (r), it is a

solution of a central force problem and must have the form
d"ném(r) = fnl(7')1/€m (Q) (33)

where f is the radial wave function and (n, ¢, m) are the usual central force quantum numbers. With
center-of-mass and relative eigenfunctions (32) and (33), we will write the total energy eigenfunction
(29) in ket language as
W) = [P)[ntm). (34)
The total energy of the product wave function (29) or (34) is
2

P
_ =
Etot - oM + Enla (30)

where E,,; is the central force energy eigenvalue, which is independent of m because of the rotational
invariance of Hye (and the Wigner-Eckart theorem). In the case of a molecular potential V', this

energv has the approximate form.

o+ 1)R*

Epe =
¢ or

+(n+ %)ﬁw, (36)

where I = pr2 is the moment of inertia of the diatomic at its equilibrium bond length and n
is the quantum number of the approximately harmonic vibrations whose frequency is w. This
approximation is rough and is valid only for small vibrational quantum numbers n (near the bottom
of the well, where the harmonic approximation is best), but it conveys the right idea about the
rotational-vibrational spectrum of the molecule. Notice that the first term in Eq. (36), the energy

of a rigid rotor of moment of inertia I and angular momentum +/¢(¢ + 1)k, is also the centrifugal




potential for a central force Hamiltonian in which the radius r is fixed at the equilibrium bond length
ro. The energy (36) is the sum of a rotational and a vibrational contribution.
Now let us consider the effect of the exchange operator Fy5 on these energy eigenfunctions. By

swapping labels 1 and 2, it is easy to see from Eq. (23) that R and r transform under E;5 according

to
R —R,
(37)
r— —r,
so the effect on the wave function is
U(R,r) 22 ¥(R, -1). (38)

The center-of-mass position is not affected, but the relative position vector is flipped through the
origin. This behavior reminds us of the parity operator 7, which flips all position vectors through the
origin, and, in fact, F12 behaves the same as parity insofar as the relative coordinate is concerned.
As a result it is easy to confuse exchange and parity, a bad idea since physically they are quite
distinct. Nevertheless, since we know what parity does to central force eigenfunctions, it is easy to
see the effect of exchange on two-particle eigenfunctions such as (29). In particular, parity does not
affect the radial wave function f,,(r), but it multiplies the Yy, by (—1)¢ (a phase that is independent

of m). See Eq. (21.52). As for the center-of-mass part of the wave function, by Eq. (38) exchange

does nathing to it Altogothor wo hayo

Epp|V) = Ep|P)|ntm) = (—1)%| ). (39)

The energy eigenfunctions are automatically eigenfunctions of E;»; this is the simultaneous eigenbasis
whose existence is promised by the commutation relation [E12, H] = 0. We see that the exchange

quantum number of the energy eigenfunction is (—1)°%.

7. The Symmetrization Postulate

So far we have just explored the mathematical consequences of the commutation relation

[E12, H] = 0. Now, however, we must take into account the important experimental fact that
the states of odd ¢ in the rotational spectrum of 12C5 do not exist. This can be determined by direct
spectroscopic means, and there is similar evidence of missing rotational states, both spectroscopic
and thermodynamic, for other homonuclear diatomic molecules. If one of the carbon atoms is re-

placed by a different isotope, say 4C, then all angular momentum states ¢ are observed. In this

case the masses are no longer equal and some of the transformations we have written down require
modification, and the operator Ei5 is not very meaningful. Nevertheless, it is meaningful to talk
about the angular momentum states ¢ of the rotor, and all of them are present if the nuclei are not
identical. We can say that in the case of the 2Cy molecule, only the subspace Eeyen in Eq. (6) is
physical. It is perfectly possible to write down wave functions that are odd under exchange, includ-
ing perfectly valid eigenfunctions of the Hamiltonian (1), but these do not correspond to anything

physical. They are just mathematical objects without any correspondence with physical reality.




These facts about the *2C5 molecule are a special case of a collection of experimental evidence

that can be summarized in what we will call the symmetrization postulate:

Symmetrization Postulate. In any system consisting of two or more identical particles, the
wave function is symmetric under the exchange of any two identical bosons, and antisymmetric

under the exchange of any two identical fermions.

Recall that bosons are particles of integer spin, while fermions are particles of half-integer
spin. Notice that a system may contain more than one different species of identical particles, for
example, helium has two identical protons and two identical neutrons in the nucleus, and two
identical electrons orbiting the nucleus. The symmetrization postulate applies to exchange of any
pair of identical particles of any species. We have only defined the exchange operator in these notes
for the case of two identical particles, but the definition is easily extended to multiparticle systems,

something we shall do when we study such systems.

This postulate cannot be derived from the earlier (measurement) postulates of quantum me-
chanics discussed in Notes 2 or 3. Within the context of nonrelativistic quantum mechanics it must
simply be taken as an experimental fact. Indeed it 7s an experimental fact, and historically this was
how it was discovered. Nevertheless, within the framework of relativistic quantum field theory, it
is possible to justify the symmetrization postulate on the basis of certain reasonable assumptions.
These include the requirement that energy be bounded from below and that relativistic causality
hold (signals cannot travel faster than the speed of light). This theoretical derivation of the sym-
metrization postulate was given by Pauli in 1940, in the form of the famous spin and statistics

theorem. It is regarded as one of the triumphs of relativistic quantum field theory.
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ITT)
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1. Consider an infinite potential as discussed in class, with boundaries at x = 0 and x = a: (a) E

Vx)=0,x>a,x<0 and V(x)=0,0< x <a.
n=>5 25E, (=1=1 S Lk =
v EFAEE
n=4 16E,
0
a
The energy eigenfunctions are known to be:
P n=3 OE,
u,(x) = ESinT' 0<x<a
=0 x<0,x>a n=2 4E1
. . ©) n2m2h2 n=1 ‘ . El
with eigenvalues: E,”’ = P E=0

5. Consider an infinite box with boundaries at x = 0 and x = a. The energy eigenstates
and eigenvalues are described in problem 2. Put two electrons in the box. The
wavefunction of the ground state of the two-electron system, denoted by the two

quantum number (n; = 1,n, = 1), can be written as:

g[sin (gxl) sin (gxz)] : % (T4 = R

This overall antisymmetric wavefunction consists of a symmetric space part (of two

identical wavefunction) and an antisymmetric spin part.

A. Consider the first excited state. What is the energy eigenvalue?

B. Write down the wavefunction of the four first excited state, using the above
notation.

C. What is the energy eigenvalue of the second excited states?

Solution:

A. The first excited state has one electron in n = 1 and one in n = 2. The energy is

5m2h?
the sum: -
2ma




Solution:

A. The first excited state has one electron in n = 1 and one in n = 2. The energy is

5m2h?
the sum: >
2

ma

B. The overall wavefunctions need to be antisymmetric. Therefore, it could consist of

a symmetric space part and an antisymmetric spin part,

\/_[ sm sm (%sz> + %sm (Z xz) sin (2— xl)] — () = 1)
ora antlsymmetrlc space part and a symmetric spin part,
\F [ sm sm (%T xz) — zsin (ng) sin (%Tnn)] - |TT)
% [gsin (Iéxl) sin (%Tx2> — %sin (g xz) sin (%T xl)] . % (T + 1)
\/_ [ sm sm (Zg xz) — gsin (gxz) sin (%Txlﬂ - 4d)

C. The second excited state has both electroninn =2 (n =

8m2h2

3,1 or 1,3 has higher energy). The energy is the sum: p—



1A BB eI HTHE T B B — P -8 1 IE Ground State 1,1
EX = (p11|Hi|d11)

H, S ERRA > (P11 |Ha|dr,1 ) NHISCETTE E GRS E BEENRE - EHL -
14-2 EFFECTS OF ELECTRON-ELECTRON REPULSION

The presence of V, the electron—clectron Coulomb repulsion, may, in first approximation,
be treated as a perturbation. Let us first compute the energy shift of the ground state to
first order in V. We need to evaluate

2

7"'*':"‘()ll'l -

AE = ff d3r1 dsrzug:(r,, rz) 4 | uo(r[, rz) (14'17)

We start with a crude estimate of the effect of this perturbation. Each electron is approxi-
mately a distance a/Z from the nucleus. The energy is lowest when the electrons are as
far away from each other as possible. This means that the effective separation between the
electrons will be fa,/Z, where fis some number, no larger than 2. The repulsion energy is

then
AE~ € Z 27.2 ¢V 14-18
ooy~ F T2V (19
2
=ff d3r, d3’2|¢100(f1)|2 £ |¢100(1'2)|2 (14-19)
47T€0|1'1 - l'2|



2
= ff d’r, d’r |¢1oo(l'1)|24 £ | di00(r2) |2 (14-19)

77'6'0|1'1 _1'2|

The integral has a simple interpretation: Since |¢,00(r;)|? is the probability density of find-
ing electron 1 at r, we may interpret e|d,y(r))* as the charge density for electron 1.
Hence

elquOO(rl) |2

|1'1 _l’zl

Ury) = — f d*r, (14-20)

is the potential at r, due to the charge distribution of electron 1, and

AE = —

f d rze|¢100(r2)|2 U(r,)

477'0

1s therefore the electrostatic energy of interaction of electron 2 with that potential. The in-
tegral can be worked out. With



2 Z 3/2
b100(r) = vis (3,3) e~ (14-21)
ar

we have

_(1{Z V& T 2 —ZZr.laOT 2 —ZZrZIaOJ. J’ 1
AE (,n. (00) ) 4’”‘80 0 rl drle 0 r2 drze dQl sz |r1 _ r2| (14'22)

We shall use the fact that

1 |
e, — r2[ (r* + r3 — 2rr, cos 0)

(14-23)

172

where @ is the angle between r; and r,. We may proceed in one of two ways.

(a) Most directly, we choose the direction of r, as the z-axis for the d{}, integration,
and get

dQ, — 1 f d f d(cos 6 1
j ’ ¢ ) dlcos )( 2+ r2— 2r,r, cos )2

= —271'— [(r? + ri— 2r,r, cos )86 (14-24)

=_2("1+"2_ Irl_r2|)

The integration over d€2, is trivial since nothing depends on that direction, and it
gives 4. This leaves us with

o

2 6
8 21-;%_% (%) J- r, drie e f rydre % (r 1, — r— 1) (14-25)
0 0



We next evaluate (14-25), which gives us

@

AE = Si zZ 6 dre—2Zra] o 2 gy~ 2% 7 dr.e—22r%
= de; \ r,dre ridrae r, | rydre
0

0 n

The integrals are standard and yield the answer?

_5 z2 _5,(1 2
AE = 8 dmegag 4 Z(2 mc*a ) (14-27)

This is a positive contribution, since it arises from a repulsive force, and its magnitude for
Z = 2 is 34 eV. When this is added to the zero-order result of —108.8 ¢V we obtain, to

first order,
E=—-748¢V

When this is compared with
E.,= —78975¢eV

.=
a sizable discrepancy is seen. Physically, we can attribute this discr
in our calculation we took no account of “screening”—that is, the e

of one electron tends to decrease the net charge “seen” by the (15)(2s)
. . . (15)(2p)

roughly, if one argues that, for example, electron 1 is half the time

and the nucleus, then half the time electron 2 sees a charge Z and (1 ,2)

charge Z — 1; that is, effectively, in the expression

. . 1 29(r72_ 5
+ AE = — — =
E + AE o mc'e (ZZ ) )
(Z — 1/2) should be substituted for Z. This does improve agreemer
ment advanced is not sufficient justification of the choice of 50 perc
of effective screening. We will return to this subject later in this cha
the Rayleigh-Ritz variational principle for the ground-state energy.

(1,1)

(15)?

s
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1
1s2 .- P
——P ) 2K,
, L 3
triplet
J2p .
= singlet .
Is El(,z) = J12 £ Ky
1s2s
2R AEs—17 <AEs—qs
/ 3S
' T, triplet
Unperturbed ,"’I

B (AR R ¢ tripletZe Ry S 1 -
R TE T-SENTHERIR(E RS R MRLAEE ) » R tripletfaE RE -

tation, which we use for the perturbed states in the figure. We see that the singlet states lie
above the triplet states in a given multiplet. This follows from the symmetry (cf. our argu-
ment that K,; > 0) and is a special example of one of Hund’s rules: Other things being
equal, the states of highest spin will have the lowest energy.

W (81O 7 52 B iRl R - hE Re (i
SR M (1S E B TEfRRRRVRE & © B2 B i A€ © 1 Fyexchange force.




for the spatially symmetric singlet state. An interesting aspect of this result is that, al-
though the perturbing potential (14-4) does not depend on the spins of the electrons, the
symmetry of the wave function does make the potential act as if it were spin-dependent.
We may write (14-30) in a form that exhibits this. Let the spins of the two electrons be s,
and s,. Then the total spin S = s, + s,, and

S?=s+85+ 25, *s, (14-32)

If we act with this on triplet and singlet states (14-16) and (14-13) that are also eigenstates
of s? and s2, we get

S(S + 12 = 43ﬁ2 + %ﬁ? + 28, °5, (14-33)
that is,
3 % triplet
281 b Sz/flz = S(S + 1) - E = 3 (14"34)
3 singlet
We may thus write, in terms of the o’s related to the spins by s; = (1/2)%0;,
AE, = J,, — %(1 + 0, 0,)K, (14-35)

This result has implications beyond the explanation of some of the details of the spectrum
of helium. As was first pointed out by Heisenberg, the exchange forces provide a mecha-
nism by means of which spin-dependent effects are of magnitude comparable to those that
are independent of spin. Usually, as illustrated in spin-orbit coupling or hyperfine cou-
pling (see Ch. 12) spin-dependent forces have a magnetic origin, and are thus reduced by
factors of O (v*/c?) = O (a?) compared to the electrical forces. Such weak forces could
not be strong enough to keep the electron spins aligned in a ferromagnet, except at

extremely low temperatures. In fact, exchange forces are responsible for the phenomenon
of ferromagnetism.
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If we excite helium from the ground state by shining ultraviolet light on it, we find
that the selection rule AL = 1, which we will derive later, implies an excitation to the P
states. Furthermore, there is a selection rule AS = 0; that is, only transitions singlet —
singlet and triplet — triplet dominate.* Hence the state most strongly excited from the
ground state is the 'P; state. The other levels may also become occupied through other
mechanisms—for example, collisional excitation. Once occupied, the radiative transitions
to the ground state are very improbable. The *P state, which may be populated when
atoms in the 'P, state undergo collisions with other atoms in the gas, can only decay to the
3S, state, and that state is metastable, since it cannot decay to the ground state easily. The
fact that there are no transitions, to good approximation, between triplet states and singlet
states led, at one time, to the belief that there existed two kinds of helium, orthohelium
(triplet) and parahelium (singlet).
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Supplement 1 O -A

The Addition of Spin 1/2 and
Orbital Angular Momentum
(Details)

Of great importance for future applications is the combination of a spin with an orbital an-
gular momentum. Since L depends on spatial coordinates and S does not, they commute

[L.S]=0 (10A-1)
It is therefore evident that the components of the total angular momentum J, defined by
J=L+S (10A-2)

will satisfy the angular momentum commutation relations.
In asking for linear combinations of the Y, and the y-. that are eigenstates of

J.=L +S, (10A-3)
and
JP=L>+S*+2L-S
=L>+S*+2LS.+L.S_+L_S,

[H+m+1 [l —m
Urs1pmen = WYImXJr + 2+ 1 Yzm+1X—

We can guess that the j = / — 1/2 solution must have the form

[l — ; [+m+ 1
Yiipmein = 3] +"i Yimk+ — % Yim+1X-

(10A-4)




j=ll+lzﬁll+12_1’ll+12'_2’---’ll|—12|

mj=j’j_l’j—2’---9_]

f
|
|
|
|

j1+i2 1+i2  h1-i2—1
Y@+ =2(Y - Y j)+i+—Gi-i+1)
j=i1-i2 j=0 j=0
(Gr+i2)G1+j2+ 1D —G1—j2— DG —j2) +2j2+ 1 (20.7.24)
= (j14j2)% — (1 —j2)? +2j1 +2j2 + 1

=2j12j2+ 1) +2j2+1=(2j; + 1)(2j2+ 1).
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(,bfl...nN (g1 5gn) = ‘]\“ ZP[gokl (gr)eeeeeeee Pry (gv)] (3.1.2)
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