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In the present discussion we will take a simpler approach, but one that captures many of the
ideas of the more sophisticated theory. Let us argue that since the nuclei are heavy and slow moving,
we can treat them by classical mechanics, while the electrons, which are light, fast, and not easily
localized due to the constraints of the uncertainty principle, must be treated by quantum mechanics.
Thus, we will treat R, and P, in Eq. (39) as e-numbers, which presumably obey some classical
equations of motion that endow them with some time dependence, and we will treat r; and p; as

operators acting on wave functions for the electrons. This is a hybrid classical-quantum approach.

The adiabatic theorem tells us to look at the eigenfunctions of Hgje. for fixed values of the

parameters R. Physically, this means that we fix or freeze the locations of the nuclei, and then
solve for the electronic eigenfunctions and eigenvalues at the given nuclear locations. This problem
is similar to atomic structure calculations, except that that the electrons are attracted to two or

more fixed centers, instead of just one.
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The interpretation of this equation is roughly that orbitals |1) and |2)
both have energies €5 which is shifted by V,.,ss due to the presence of
the other nucleus. In addition the electron can “hop” from one orbital to
the other by the off-diagonal £ term. To understand this interpretation
more fully, we realize that in the tzme-dependent Schroedinger equation,
if the matrix were diagonal a wavefunction that started completely in
orbital |1) would stay on that orbital for all time. However, with the off-
diagonal term, the time-dependent wavefunction can oscillate between
the two orbitals.

/N
—~
| 3
N
n
—~
=
S =+
n
~_
/
S Q
~
[

(Veross! — toy) (Z) = (D (Z)

RIPEREEAE R ¢ E© + Vs T ¢

Are  |yi) = 701) + |2))



(@) Separate hydrogen atoms

¢0 @) ;

' Nucleus
(proton)

ndividual H atoms are usually
Sly separated and do not interact.

are concentrated 1
region between the
nuclei.




€0 + Vcross +t

antibonding

Ri2 &0

bonding Rlt?T
& t+ Vcross —t ¢

Fig. 6.5 Model tight binding energy
levels as a function of distance between
the nuclei of the atoms.
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Fig. 6.6 More realistic energy levels as
a function of distance between the nu-
clei of the atoms.
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The notion that

the electronic eigenvalue is the potential energy for the nuclear motion

leads to

an immediate understanding of the nature of the chemical bond. The example of the Hy molecule

will be discussed in class.
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am, and Stewart. (Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The
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Coordinates for description of the electrons and protons in the H, Molecule.
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Ground-state energy of H, as a function of R: (a) molecular orbital calculation based on (13.30); (b) experimentally determined energy curve.
(Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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Electronicenergy in H, : Heitler-London method, as calculated for oc =1 (LCAQ), and by variational approach (Rosen). (Reprinted with
permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)




