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Fig. 7.1: Left: Small units repro-
duced periodically to form a crystal.
This particular figure depicts NaCl (ta-
ble salt), with the larger spheres being
Cl~ ions and the smaller spheres be-
ing Nat ions. Right: The macroscopic
morphology of a crystal often will re-
flect the underlying microscopic struc-
ture. These are large crystals of salt
(also known as halite). Photograph by
Piotr Wlodarczyk, used by kind per-
mission.
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(a) In an insulator at absolute zero,

there are no electrons in the

conduction band.
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(c) A conductor has a partially

filled conduction band.
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Figure 5.2 The occupation of (a) the energy levels in an isolated carbon atom, and (b) the
energy bands in a diamond crystal. Notice that there is an energy range E, separating the
highest occupied states (in the valence band) from the lowest vacant states (in the
conduction band). This is a characteristic feature of all insulators.
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Figure 5.3 The energy levels of the 25 and 2p states for a group of N carbon atoms as a
function of the separation of the atoms.
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(b) A semiconductor has the same
band structure as an insulator but

a smaller gap between the valence
and conduction bands. -.
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(b) A semiconductor has the same
band structure as an insulator but

a smaller gap between the valence E
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At any rate, in the semiclassical picture, we can write a simple Drude
transport equation (really Newton’s equations!) for electrons in the
conduction band

m_dv/dt = —e(E+v xB)—m_v/T

with m; the electron effective mass. Here the first term on the right-
hand side is the Lorentz force on the electron, and the second term is a
drag force with an appropriate scattering time 7. The scattering time
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Similarly, we can write equations of motion for holes in the valence
band

h

= +ekE

my dv/dt =e(E+v x B)—m; v/7

where m;, is the hole effective mass. Note again that here the charge on
the hole is positive. This should make sense—the electric field pulls on
an electron in a direction opposite to the direction that it pulls on the
absence of an electron!
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Electrons

k
7 V Heavy bl
Light holes

Light hole

mu,/ m

Heavy hole
mhh/ m

Electron
Crystal m/m

InSb 0.015 0.39 0.021
InAs 0.026 0.41 0.025
InP 0.073 0.4 (0.078)
GaShb 0.047 0.3 0.06
GaAs 0.066 0.5 0.082
Cu,O 0.99 — 0.58




The valence band edges are not simple. Holes ncar thc band edge are
characterized by two cffective masses, light and heavy. These arise from the
two bands formed from the pg, level of the atom. There is also a band formed
from the p,,, level, split off from the py, level by the spin-orbit interaction.
The energy surfaces are not spherical, but warped (QTS, p. 271):

e(k) = AK* = [B%k* + C*(kik} + kok2 + kZkE) |V (33)
The choice of sign distinguishes the two masses. The split-off band has
e(k) = —A + Ak®. The experiments give, in units h22m,

Si: A=-—4929 ; IBl = 0.68 ; ICl = 4.87 ; A =0.044 eV
Ge: A=-1338: IBl = 8.48 ICl = 13.15 ; A =0.29eV

Roughly, the light and heavy holes in germanium have masses 0.043 m and
0.34 m; in silicon 0.16 m and 0.52 m; in diamond 0.7 m and 2.12 m.

The conduction band edges in Ge are at the equivalent points L of the
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surfacc ori-
ented along a (111) crystal axis, with a longitudinal mass m; = 1.59 m and a
transverse mass m, = 0.082 m. For a static magnetic field at an angle 6 with
the longitudinal axis of a spheroid, the effective cyclotron mass m, is

1 _ cos’0  sin’0 (34)

2 g2 My

m,

Results for Ge are shown in Fig. 16.

In silicon the conduction band edges are spheroids oriented along the
equivalent (100) directions in the Brillouin zone, with mass parameters
my = 0.92 m and m, = 0.19 m, as in Fig. 17a. The band edges lie along the lines
labeled A in the zone of Fig. 15a, a little way in from the boundary points X.

In GaAs we have A = —6.98, B = —45, ICl =6.2, A = 0.34]1 eV. The
band strneture ic chown in Fig. 17b. It has a direct band gap with an isotropic
condy S€reenshot , 1hass of 0.067 m.
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Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in
good agreement with experiment. The four valence bands are shown in gray. The fine structure of
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction
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band edge is at the point (277/a)(; 5 3). The constant energy surfaces around this point are ellipsoidal.
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Conduction electron concentration, cm™

Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor
range may Screenshot ward by increasing the impurity concentration, and the range can be ex-
tended downwara .0 merge eventually with the insulator range.



17.1 Electrons and Holes

Suppose we start with an insulator or semiconductor and we excite one
electron from the valence band to the conduction band, as shown in the
left of Fig. 17.1. This excitation may be due to absorbing a photon, or
it might be a thermal excitation. (For simplicity in the figure we have
shown a direct band gap. For generality we have not assumed that the
curvature of the two bands are the same.) When the electron has been
moved up to the conduction band, there is an absence of an electron
in the valence band known as a hole. Since a completely filled band is
inert, it is very convenient to only keep track of the few holes in the
valence band (assuming there are only a few) and to treat these holes
as individual elementary particles. The electron can fall back into the
empty state that is the hole, emitting energy (a photon, say) and “anni-
hilating” both the electron from the conduction band and the hole from
the valence band.! Note that while the electrical charge of an electron
is negative the electrical charge of a hole (the absence of an electron) is
positive—equal and opposite to that of the electron.?

Empty Conduction Band

i
E :
|

o

k— kmax

Filled Valence Band

v

k

I This is equivalent to pair annihila-
tion of an electron with a positron. In
fact, the analogy between electron—hole
and electron—positron is fairly precise.
As soon as Dirac constructed his equa-
tion (in 1928) describing the relativis-
tic motion of electrons, and predicting
positrons, it was understood that the
positron could be thought of as an ab-
sence of an electron in a filled sea of
states. The filled sea of electron states
with a gap to exciting electron—positron
pairs is the inert vacuum, which is anal-
ogous to an inert filled valence band.

2If this does not make intuitive sense
consider the process of creating an
electron—hole pair as described in
Fig. 17.1. Initially (without the excited
electron-hole pair) the system is charge
neutral. We excite the system with a
photon to create the pair, and we have
not moved any additional net charge
into the system. Thus if the electron
1s negative, the hole must be positive
to preserve overall charge neutrality.

Fig. 17.1 Electrons and holes in a
semiconductor. Left: A single hole in
the valence band and a single electron
in the conduction band. Right: Mov-
ing the hole to a momentum away from
the top of the valence band costs posi-
tive energy—Ilike pushing a balloon un-
der water. As such, the effective mass
of the hole is defined to be positive.
The energy of the configuration on the
right is greater than that on the left by
E = h?|K — Kmax|?/(2m™)



3t is an important principle that
near a minimum or a maximum one
can always expand and get something
quadratic plus higher order corrections.

4For simplicity we have assumed the
system to be isotropic. In the more gen-
eral case we would have

E=Emin + az(ks—kmin)2
+ ay(ky —kym)?
+  ay(k, — k™2 4

for some orthogonal set of axes (the
“principal axes”) z,y,z. In this case
we would have an effective mass which
can be different in the three different
principal directions.

5For simplicity we also neglect the spin
of the electron here. In general, spin—
orbit coupling can make the dispersion
depend on the spin state of the electron.
Among other things, this can modify
the effective electron g-factor.

6t often occurs that the bottom of con-
duction band has more than one min-
imum at different points kr::in in the
Brillouin zone with exactly the same
energy. We then say that there are
multiple “valleys” in the band struc-
ture. Such a situation occurs due
to the symmetry of the crystal. For
example, in silicon (an fcc structure
with a basis, see Fig. 12.21), six con-
duction band minima with the same
energy occur approximately at the
k-points (£5.3/a,0,0), (0,£5.3/a,0),
and (0,0,+5.3/a).

"More accurately, v = Vi E(k)/li+ K
where the additional term K is known
as the “Karplus-Luttinger” anomalous
velocity and is proportional to applied
electric field. This correction, result-
ing from subtle quantum-mechanical ef-
fects, is almost always neglected in solid
state texts and rarely causes trouble
(this is related to footnote 9 in Chapter
11). Only recently has research focused
more on systems where such terms do
matter. Proper treatment of this effect
is beyond the scope of this book.

8Be warned: a few books define the
mass of holes to be negative. This
is a bit annoying but not inconsistent
as long as the negative sign shows up
somewhere else as well!

Effective Mass of Electrons

As mentioned in Sections 11.2 and 15.1.1, it is useful to describe the
curvature at the bottom of a band in terms of an effective mass. Let us
assume that near the bottom of the conduction band (assumed to be at
K = Kpnin) the energy is given by?:4:5:6

E = Emin + alk - kminl2 +...

with @ > 0, where the dots mean higher-order term in the deviation
from Kypnin. We then define the effective mass to be given by
h? 0’E
— == (17.1)
m
at the bottom of the band (with the derivative being taken in any di-
rection for an isotropic system). Correspondingly, the (group) velocity
is given by’

_ VkE _ h(k —Kkpin)
vV = =
h m* .
This definition is chosen to be in analogy with the free electron behavior
E = h%|k|?/(2m) with corresponding velocity v = Vi E /h = hk/m.

(17.2)

Effective Mass of Holes

Analogously we can define an effective mass for holes. Here things get
a bit more complicated. For the top of the valence band, the energy
dispersion for electrons would be

E = Enax — ok — Kpax|2 + - (17.3)

with @ > 0. The modern convention is to define the effective mass for
holes at the top of a valence band to be always positive®

R 0’E

m;;ole
The convention of the effective mass being positive makes sense because
the energy to boost the hole from zero velocity (k = kmax at the top of
the valence band) to finite velocity is positive. This energy is naturally
given by
7%k — kmax|?
Ehole = constant + ——————
thole
The fact that boosting the hole away from the top of the valence band is
positive energy may seem a bit counter-intuitive being that the disper-
sion of the hole band is an upside-down parabola. However, one should
think of this as being like pushing a balloon under water. The lowest en-
ergy configuration is with the electrons at the lowest energy possible and
the hole at the highest energy possible. So pushing the hole under the
electrons costs positive energy. (This is depicted in the right-hand side
of Fig. 17.1.) A good way to handle this bookkeeping is to remember

(17.5)

E(absence of electron in state k) = —F(electron in state k).



The momentum and velocity of a hole

There is a bit of complication with signs in keeping track of the momen-
tum of a hole. If an electron is added to a band in a state k then the
crystal momentum contained in the band increases by hk. Likewise, if
an electron in state k is removed from an otherwise filled band, then the
crystal momentum in the band must decrease by k. Then, since a fully
filled band carries no net crystal momentum the absence of an electron
in state k should be a hole whose crystal momentum is —Ak. It is thus
convenient to define the wavevector Ky, of a hole to be the negative of
the wavevector Kelectron Of the corresponding absent electron.?

This definition of wavevector is quite sensible when we try to calculate
the group velocity of a hole. Analogous to the electron, we write the
hole group velocity as the derivative of the hole energy

vkholg Eho]e
h

Now, using Eq. 17.5, and also the fact that that the wavevector of the
hole is minus the wavevector of the missing electron, we get two canceling
minus signs and we find that

(17.6)

Vhole =

Vhole = Vmissing electron.

This is a rather fundamental principle. The time evolution of a quantum
state is independent of whether that state is occupied with a particle or
not!

Effective Mass and Equations of Motion

We have defined the effective masses above in analogy with that of free
electrons, by looking at the curvature of the dispersion. An equivalent
definition (equivalent at least at the top or bottom of the band) is to
define the effective mass m™ as being the quantity that satisfies Newton’s
second law, F' = m*a for the particle in question. To demonstrate this,
our strategy is to imagine applying a force to an electron in the system
and then equate the work done on the electron to its change in energy.
Let us start with an electron in momentum state k. Its group velocity
is v=ViE(k)/h. If we apply a force,'? the work done per unit time is

dW/dt =F -v =F -V E(k)/h.

On the other hand, the change in energy per unit time must also be (by
the chain rule)

dE/dt = dk/dt - Vi E(k).
Setting these two expressions equal to each other we (unsurprisingly)
obtain Newton’s equation

pdk _ dp

F=h—=—
dt dt

(17.7)

where we have used p = hk.

90ther conventions are possible but
this is probably the simplest.

IOF . .
or example, if we apply an electric
field E and it acts on an electron of
charge —e, the force is F = —eE.



HEor simplicity we write this in its one-
dimensional form.

If we now consider electrons near the bottom of a band, we can plug
in the expression Eq. 17.2 for the velocity, and this becomes

dv

-

exactly as Newton would have expected. In deriving this result recall
that we have assumed that we are considering an electron near the bot-
tom of a band so that we can expand the dispersion quadratically (or
similarly we assumed that holes are near the top of a band). One might
wonder how we should understand electrons when they are neither near
the top nor the bottom of a band. More generally Eq. 17.7 always holds,
as does the fact that the group velocity is v = Vi E/h. It is then some-
times convenient to define an effective mass for an electron as a function
of momentum to be given by!!

h? 0’E

m*(k)  Ok?

F=m"

which agrees with our definition (Eq. 17.1) near the bottom of band.
However, near the top of a band it is the negative of the corresponding
hole mass (note the sign in Eq. 17.4). Note also that somewhere in
the middle of the band the dispersion must reach an inflection point
(92E /0k? = 0), whereupon the effective mass actually becomes infinite
as it changes sign.

Aside: It is useful to compare the time evolution of electrons and holes near
the top of bands. If we think in terms of holes (the natural thing to do near the
top of a band) we have F = +¢cE and the holes have a positive mass. However,
if we think in terms of electrons, we have F = —eE but the mass is negative.
Either way, the acceleration of the k-state is the same, whether we are describing
the dynamics in terms of an electron in the state or in terms of a hole in the
state. As mentioned below Eq. 17.6, this equivalence is expected, since the time
evolution of an eigenstate is independent of whether that eigenstate is filled with
an electron or not.

17.1.1 Drude Transport: Redux

Back in Chapter 3 we studied Drude theory—a simple kinetic theory of
electron motion. The main failure of Drude theory was that it did not
treat the Pauli exclusion principle properly: it neglected the fact that in
metals the high density of electrons makes the Fermi energy extremely
high. However, in semiconductors or band insulators, when only a few
electrons are in the conduction band and/or only a few holes are in the
valence band, then we can consider this to be a low-density situation,
and to a very good approximation, we can ignore Fermi statistics. (For
example, if only a single electron is excited into the conduction band,
then we can completely ignore the Pauli principle, since it is the only
electron around—there is no chance that any state it wants to sit in will
already be filled!) As a result, when there is a low density of conduc-
tion electrons or valence holes, it turns out that Drude theory works



extremely welll We will come back to this issue later in Section 17.3,
and make this statement much more precise.

At any rate, in the semiclassical picture, we can write a simple Drude
transport equation (really Newton’s equations!) for electrons in the
conduction band

12Mobility is defined to be positive for
both electrons and holes.

midv/dt = —e(E+v xB)—m:v/r

with m} the electron effective mass. Here the first term on the right- (/ST) (,ST) (/ST) (/ST) (/S-l\)
hand side is the Lorentz force on the electron, and the second term is a N N S\
drag force with an appropriate scattering time 7. The scattering time —~  ~ o~ o~ o~
determines the so-called mobility i which measures the ease with which (El,) (El,) (\S_l,) (\S_i,) (E‘,)
the particle moves. The mobility is generally defined as the ratio of the ~ o~~~ o~
velocity to the electric field.'? In this Drude approach we then obtain (\Sl) (EL) (\P/) (\Si/) (\SL)

i = [VI/|E| = |er/m"|. (s) (s0) (50) (50) (50)

Similarly, we can write equations of motion for holes in the valence e e :
band & G G G 6

mj dv/dt =e(E+v x B) —mj, v/T

where mj, is the hole effective mass. Note again that here the charge on
the hole is positive. This should make sense—the electric field pulls on
an electron in a direction opposite to the direction that it pulls on the
absence of an electron! IR~ —~

If we think back all the way to Chapters 3 and 4, one of the physical (\S_‘,) (\S‘,) (\Si,) (E‘,) (\S‘,)
puzzles that we could not understand is why the Hall coefficient some- W
times changes sign (see Table 3.1). In some cases it looked as if the (\Sl/) (El/) (si) (si) (El/)

(s) (s0) (50) (50) (50)

+one free electron

charge carrier had positive charge. Now we understand why this is true. . tproton
In some materials the main charge carrier is the hole! (si) (si) (si) (si) (si)
17.2 Adding Electrons or Holes with (s) (s) (80) (s) (s)

Impurities: Doping
Fig. 17.2 Cartoon of doping a semicon-
In a pure band insulator or semiconductor, if we excite electrons from ductor. Doping Si with P adds one free
the valence to the conduction band (either with photons or thermally) e.lecmm to wander freely i,“ the C"“fh.‘c'
. . . tion band and leaves behind a positive
we can be assured that the density of electrons in the conduction band charge on the nucleus.
(typically called n, which stands for “negative” charges) is precisely
equal to the density of holes left behind in the valence band (typically
called p, which stands for “positive” charges). However, in an impure
semiconductor or band insulator this is not the case.
Without impurities, a semiconductor is known as intrinsic. The oppo-
site of intrinsic, the case where there are impurities present, is sometimes
known as extrinsic.
Let us now examine the extrinsic case more carefully. Consider for
example, silicon (Si), which is a semiconductor with a band gap of about
1.1 eV. Now imagine that a phosphorus (P) atom replaces one of the
Si atoms in the lattice as shown on the top of Fig. 17.2. This P atom,
being directly to the right of Si on the periodic table, can be thought



of as nothing more than a Si atom plus an extra proton and an extra

13 There are extra neutrons as well, but  electron,® as shown in the bottom of Fig. 17.2. Since the valence band is
they don’t do much in this context. already filled this additional electron must go into the conduction band.
» ~ The P atom is known as a donor (or electron donor) in silicon since it
“Dopant” generally means a chemi- donates an electron to the conduction band. It is also sometimes known

1 inserted int bject to alter it . . . .
cal inserted into an object to alter its . ., n-dopant,'* since n is the symbol for the density of electrons in
properties. This definition is true more

broadly than the field of physics (e.g. the conduction band.
Lance Armstrong, Jerry Garcia). Analogously, we can consider aluminum, the element directly to the

15 o . left of Si on the periodic table. In this case, the aluminum dopant
Yes, it is annoying that the com- . . . .
mon dopant phosphorus has the chem- provides one fewer electron than Si, so there will be one electron missing
ical symbol P, but it is not a p-dopant from the valence band. In this case Al is known as an electron acceptor,

in Si, it is an n-dopant. or equivalently as a p-dopant, since p is the symbol for the density of
16\ fore frequently than Al, boron (B) holes.1:16
is used as a p-dopant in Si. Since B lies In a more chemistry-oriented language, we can depict the donors and

just above Al in the periodic table, it

plays the same chemical role acceptors as shown in Fig. 17.3. In the intrinsic case, all of the electrons

are tied up in covalent bonds of two electrons. With the n-dopant, there
is an extra unbound electron, whereas with the p-dopant there is an
extra unbound hole (one electron too few).

Fig.17.3 Cartoon of doping a semicon-
ductor. Left: In the intrinsic case, all

A
of the electrons are tied up in covalent \/\/@]\ K
s /

bonds of two electrons. Middle: In C ‘e)-{- + e e)-{-@ >
the n-dopant case there is an extra un- (e e e

bound electron, and the dopant carries }\?} \&/ ex

an extra nuclear charge. Right: In the C &)+ (€je + clo+e€)> (e
p-dopant case there is one electron too [e) @/
few to complete all the bonds so there \&/ e’\
is an extra hole (denoted h) and the nu- C &) +@ ‘@ + ©+E€]>
clear charge has one less positive charge \@ /\/ /e\,/
\V

than in the intrinsic case (the + sign is
supposed to look slightly less large). IIItI'lIlSlC
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17.2.1 Impurity States

Let us consider even more carefully what happens when we add dopants.
For definiteness let us consider adding an n-dopant such as P to a semi-
conductor such as Si. Once we add a single n-dopant to an otherwise
intrinsic sample of Si, we get a single electron above the gap in the con-
duction band. This electron behaves like a free particle with mass m;.
However, in addition, we have a single extra positive charge +e at some
point in the crystal due to the P nucleus. The free electron is attracted
back to this positive charge and forms a bound state that is similar to a
hydrogen atom. There are two main differences between a real hydrogen
atom and this bound state of an electron in the conduction band and the
impurity nucleus. First of all, the electron has effective mass m which
can be very different from the real (bare) mass of the electron (and is
typically smaller than the bare mass of the electron). Secondly, instead
of the two charges attracting each other with a potential V = 2 /(4meor)
they attract each other with a potential V = &2 /(4mereor), where €, is
the relative permittivity (or relative dielectric constant) of the material.



With these two small differences we can calculate the energies of the
hydrogenic bound states exactly as we do for genuine hydrogen in our
quantum mechanics courses.

We recall that the energy eigenstates of the hydrogen atom are given
by E,If —atom — _Ry/n? where Ry is the Rydberg constant given by

m62

Ry = % ~13.6eV
Y= 8e2n2 ¢

with m the electron mass. The corresponding radius of this hydrogen

atom wavefunction is 7, &~ n2ay with the Bohr radius given by
Ameoh?
ap = —=— ~ .51 x 1071°m,
me

The analogous calculation for a hydrogenic impurity state in a semicon-
ductor gives precisely the same expression, only €; is replaced by ege,.
and m is replaced by m}. One obtains

R,ye“ — Ry (me lQ)
m €x

eff m
ay =ag | &r—;
me

Because the dielectric constant of semiconductors is typically high (on
the order of 10 for most common semiconductors) and because the effec-
tive mass is frequently low (a third of m or even smaller), the effective
Rydberg Ry*™ can be tiny compared to the real Rydberg, and the effec-
tive Bohr radius agf can be huge compared to the real Bohr radius.!”
For example, in silicon!® the effective Rydberg, Ry, is much less than
.1 eV and af is above 30 Angstroms! Thus this donor impurity forms
an energy eigenstate with energy just below the bottom of the conduc-
tion band (Ry®" below the band bottom only). At zero temperature this
eigenstate will be filled, but it takes only a small temperature to excite
a bound electron out of a hydrogenic orbital and into the conduction
band.

A depiction of this physics is given in Fig. 17.4 where we have plotted
an energy diagram for a semiconductor with donor or acceptor impuri-
ties. Here the energy eigenstates are plotted as a function of position.
Between the valence and conduction band (which are uniform in po-
sition), there are many localized hydrogen-atom-like eigenstates. The
energies of these states are not all exactly the same, since each impurity
atom is perturbed by other impurity atoms in its environment. If the
density of impurities is high enough, electrons (or holes) can hop from
one impurity to the next, forming an impurity band.

Note that because the effective Rydberg is very small, the impurity
eigenstates are only slightly below the conduction band or above the
valence band respectively. With a small temperature, these donors or
acceptors can be thermally excited into the band. Thus, except at low

and

17Note that the large Bohr Radius jus-
tifies post facto our use of a contin-
uum approximation for the dielectric
constant €. On small length scales,
the electric field is extremely inhomo-
geneous due to the microscopic struc-
ture of the atoms, but on large enough
length scales we can use classical elec-
tromagnetism and simply model the
material as a medium with a dielectric
constant.

18Because silicon has an anisotropic
band, and therefore an anisotropic
mass, the actual formula is more com-
plicated.



Fig. 17.4 Energy diagram of a doped
semiconductor (left) with donor impu-
rities, or (right) with acceptor impuri-
ties. The energy eigenstates of the hy-
drogenic orbitals tied to the impurities
are not all the same because each im-
purity is perturbed by neighbor impuri-
ties. At low temperature, the donor im-
purity eigenstates are filled and the ac-
ceptor eigenstates are empty. But with
increasing temperature, the electrons in
the donor eigenstates are excited into
the conduction band, and similarly the
holes in the acceptor eigenstates are ex-
cited into the valence band.

p-doping

n-doping

E Donor Impurity Eigenstates

Acceptor Impurity Eigenstates

Filled Valence Band Filled Valence Band

X X

> >
> >

enough temperature that the impurities bind the carrier, we can think
of the impurities as simply adding carriers to the band. So the donor
impurities donate free electrons to the conduction band, whereas the
acceptor impurities give free holes to the valence band. However, at very
low temperature these carriers get bound back to their respective nuclei
so that they can no longer carry electricity—a phenomenon known as
carrier freeze out. We will typically assume that we are at temperatures
high enough (such as room temperature) such that freeze-out does not
occur.

Note that in the absence of impurities, the Fermi energy (the chemical
potential at zero temperature) is in the middle of the band gap. When
donor impurities are added, at zero temperature, impurity states near
the top of the band gap are filled. Thus the Fermi energy is moved up
to the top of the band gap. On the other hand, when acceptors are
added, the acceptor states near the bottom of the band gap are empty
(remember it is a bound state of a hole to a nucleus!). Thus, the Fermi
energy 1s moved down to the bottom of the band gap.
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Escape of the electron to large distances leaves the impurity atom with a net positive
charge; at finite separations the positive charge exerts an attractive force on the electron
and leads to the existence of a bound state for the electron. The ‘charged impurity plus
electron’ system is analogous to the ‘proton plus electron’ system and we can therefore
estimate the strength of this binding by adapting the standard result for the energy levels
of the hydrogen atom to allow for the fact that the electron is moving through a crystal
rather than a vacuum. Thus we use m, for the electron mass and assume that the crystal

has a dielectric constant (relative permittivity) € to obtain

m,e*

E"__iwiv-n 32 °
(5.10) 2e*h*n~(4me,)”
To estimate the spatial extent of the bound state wavefunctions we use the radii of the
corresponding orbits as given by the Bohr theory,

510" me

The effective mass of electrons in germanium is 0.2 electron masses and the dielectric
constant is 15.8. Using these values in Egs. (5.10) and (5.11) gives an estimate

E, = —(—=)x13.6eV~ —00leV
(512) me~

for the ground state binding energy of the extra electron and

- (”") x 053 A ~40A
m

(5.13)

for the radius of the corresponding orbit (-13.6 eV and 0.53 A are the corresponding
values for hydrogen). Thus the combination of small effective mass and large dielectric
constant gives very weak binding of the extra electron to the impurity and a very extended
wavefunction for the bound state. Since the bound state wavefunction extends over many

[4
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n — p = (density of donors) — (density of acceptors).

This, along with the law of mass action, gives us two equations with two
unknowns which can be solved.?! In short, the result is that if we are
at a temperature where the undoped intrinsic carrier density is much
greater than the dopant density, then the dopants do not matter much,
and the chemical potential is roughly midgap as in Eq. 17.11 (this is
the intrinsic regime). On the other hand, if we are at a temperature
where the intrinsic undoped density i1s much smaller than the dopant
density, then we can think of this as a low-temperature situation where
the carrier concentration is mainly set by the dopant density (this is the

extrinsic regime). In the n-doped case, the bottom of the conduction
band gets filled with the density of electrons from the donors, and the
chemical potential gets shifted up towards the conduction band. Corre-
spondingly, in the p-doped case, holes fill the top of the valence band,

and the chemical potential gets shifted down towards the valence band.
Note that in this case of strong doping, the majority carrier concen-
tration i1s obtained just from the doping, whereas the minority carrier
concentration—which might be very small—is obtained via law of mass

action. The ability to add carriers of either charge to semiconductors
by doping 1s absolutely crucial to being able to construct semiconductor
devices, as we will see in the next chapter.
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Figure 6.10 The structure of an n-channel MOSFET showing the source, gate and drain

region. The electrical contact to the gate is separated from the semiconductor by a thin layer
of insulator, typically silicon dioxide.
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Figure 6.11 (a) When a positive voltageis applied to the gate the holes in the p-type
semiconductor are repelled from the surface, and the minority carrier conduction electrons
are attracted to the surface. (b) If the gate voltage exceeds the threshold value then an
inversion layer is created near the surface. In this layer the material behaves as an n-type
semiconductor and so provides a conducting channel between the source and the drain.



Oxide

AL

Semiconductor

7/

Metal
gate

Conduction
. band
___________ H
500000060000000000000 \fnlance
o o o © e band
Depletion layer
—
e R T e — #
0000000000 0000000

© =] = [+ o
o

n-type

inversion layer — Depletion layer

oOo00000000 00
o o -] o

Degenerate
electrons

0O00000000 00000
[+] o o o

Cate

Source Metal ‘/ Drain
T I - T
\_ |// Oxide" _/
hasEnked n J
b p i

(a) Basic MOS structure

Gate R E S

(h) Electron energy levels in the
absence of an applied gate bias

Gate/IIEEYS > BEIFBEER
VEBTEA  EEZEZ)E -

(¢) A small positive gate bias
produces a depletion layer near
the surface

BT T H R AE =K
L/L:tﬁ\g\ﬁﬁ/\fb%ﬁb

(d) With a larger positive bias,
an n-type inversion layer is
created

FEZE 2 JE B ﬁ%ﬁ%

T en

(e) For an even larger positive
gate bias the electrons in the
inversion layer become
degenerate

QO

O



Gate
V=0
Contact VG

Source Drain Vs | 0
Contact Metal Gate Contact Metal Gate l L
Oxide Insulator l I or
n_doped n_doped n_doped Conducting Channel n_doped
Depletion p_doped Depletion Depletion p-doped Depletion

Semiconductor

L -
H gate BBV > n-FERGHIE T REfRK » B2 (En - EHAG B A -
AOLL LA BBV UR IOR 1 » ZRIERI BBV S Re e A s » SF[E Al ARG R -
R BRRV AR/ A ENSE > BBEVSIRA - BT R AR B a7 alak -

Semiconductor

Vg
Water in l
RRER R I Pressure
e 0 Ballcock
i ‘_ Gate
Tty Vs
Sluice SN 1 : Q 1
gate A Source Drain Source Drain
Overflow . .
n-MOSFET p-MOSFET




G|

b annd, p [ )
Aok T4 oA - .
N . v + -
REaT> R oo
4 18 i~
s 4

_ Tk L
g7 SKY77328-13 |
RE ' 32352030

2 0627 MX  7g

audio amplifier 2R A 23
V

t -

)

+V supply

0V (ground)




Insulating layer

of 8102

n-type
source

ype silicon

©2016 Pearson Education, Inc.




MOSFET JEE#EH G —

Ultraviclet radiation

R

mask

c:-:/

JEE

k p Silicon

(a)

H /3 =

! p

(b)

Photoresist
Metal -—._____\

—2S102 -
; P } ~n*—" -

=yl ES

pE7

Photoresist

\5I02

J&—Jg ~ TRAGERSHVREHE T  -

M EFrfiNEREREE —ERRNET : EBELWFER « ISUEERE MOSFET » LEiEEEH
HNESRERE - SUERBEFEFENRTHNFERAEHE - MEABBIDUSELE/) - 21 LA - 15
WERBNEREHpEENE X ERSMAEN » EESTAIMABEHETEL - REHEREMAER
NEBRRAINE—RFIRLER - RIEREUWARRER » F—FTAZMBHApEIFEEE - EEL
RETITEEE c EFE LEREEnEEERNME - F=4 » HERELE—BROCHIEE » ABIREERE
EE—RNEL > EXERENERLE  XENERSESREBpR X ERNET - IHEURIMR
IRER » JHERIECERBRAKEZRENICIAR - REREIAnEFERESNVENRMBEETI - & - FLb
IRENEDZEEERE - MEAMRETHINEXERSH ﬁﬁj‘nBﬂ@UE%E’]nﬂ 2RISR RApEL - F
REGRNHEREN I MNER R LEEBH RTINS » EtB%E - SERKREEEt ] ABHEUR
ARELEEEE -

E-ERERZFZFMRABRME  REWME ? BRY T - —ERZE—ENSER - BEALE > Wb M
AIMKEHMEEE - MEFEEMNERE  INSERIFEHEZmtEFE— R NER L > EBNES
REER - ENRAFRAER » REMNEEYCE5IEME - ERAEMIA/NEF I DAERthEE) - 20163

M7 BEIERBANGTEEEN » ER—EH B4 EEERRETHNERE - BERERTE1960FR HIR - KRG
1s dissolved. Suitable donor

atoms are diffused into the
regions of Si from which the
oxide layer has been removed;
this creates the n™ gate and
source regions

(d) A thin metal film is
evaporated over the whole
surface and this is covered

with another layer of
photoresist. Exposure to
ultraviolet radiation through a
suitable mask enables regions
of the metal film to be
selectively removed by steps
similar to those in (a) and (b).
The electrode pattern of Fig.
6.11 1s thus established
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