習題三

1. Prove that .



2. Prove that .





3. Prove that  and  is the eigenstate of with eigenvalue  .
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For the + eigenvalue we have # = -iv , s that the normalized eigenstate is y, = 73 (]
L

The — eigenstate can be obtained by noting that it must be orthogonal to the + state, and

1
this leads to y_ = 713( ) .
'’

2, We note that the matrix has the form

0.cosa + 0, sinacosf+ o sinasinf=cen

n = (sinacosf,sinasin S,cosa)

This implies that the eigenvalues must be = 1. We can now solve
( cosa sin o@””\(u] [u]
=4
Lsin ae®  —cos aJ v, v
For the + eigenvalue we have u cosar+ v sine™ = u. We may rewrite this in the form

.a a La
2vsm3 cos—e :2usm’3

From this we get

The — eigenstate can be obtained in a similar way, or we may use the requirement of
orthogonality, which directly leads to

a)

(e”"’ sin;
17 :L = J
—cos—
2
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5. We first need the eigenstates of (3S; + 48))/5. The eigenvalues will be + 71/2since the
operator is of the form Se n, where n is a unit vector (3/5,4/5,0).The equation to be
solved is

Z(ézr +40) —+I'
5902 e

In paricular we want the eigenstate for the —ve eigenvalue, that is, we want to solve

( 3- 41\

w0

3-4i
This is equivalent to (3-47) v=-5u A normalized state is 7—( J

The required probability is the square of

3-4i 1 X 1 .
Fe! >7'( -9 a-s

This number is 65/250 = 13/50.

6. The normalized eigenspinor of S, corresponding to the negative eigenvalue was found

1
in problem 1. It 157-( ) The answer is thus the square of
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which is 65/130 = 1/2.
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3. Weuse L, =L, +iL to calculate L, = 3 (L, +L); L,= E’(L’ —L,). We may now

proceed

1 1
(Lmy|L, |Lmy)= E(I,ml | L, |Lm,)y+ 5(1”"' |L_|1m,)

{Lm,|L, |I,mz):é(l,ml | L |I,mz)7é(l,ml |L, |Lm,)

and on the r.h.s. we insert

(Lmy |L, | Lmy) = (I =mp)(I+my +1)6,

(Lmy |L_|lLm,)= h\l(l‘f’ m)(I=m,+1)3, .

. 1 i
. Again weuse L =— +L); .:i L_— L) towork out
4. A 3 L +L): L, 3 +
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5. The Hamiltonian may be written as
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where -/ <m < 1.

(b) The plot is given on the right.
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where j is the total angular-momentum quantum number and |m| < j.
In the case of a diatomic molecule such as CO, I, < I so the coefficient
of m? is very much larger than the coefficient of j(j + 1) and states with
|m| > 0 will occur only far above the ground state. Consequently, the
states of interest have energies of the form

N
B =il +gp- (7.21)

For reasons that will emerge in §7.2.1, only integer values of j are allowed.

CO is a significantly dipolar molecule. The carbon atom has a smaller
share of the binding electrons than the oxygen atom, with the result that
it is positively charged and the oxygen atom is negatively charged. A
rotating electric dipole would be expected to emit electromagnetic radi-
ation. Because we are in the quantum regime, the radiation emerges as
photons which, as we shall see, can add or carry away only one unit & of
angular momentum. It follows that the energies of the photons that can
be emitted or absorbed by a rotating dipolar molecule are

h2
B, =+(E;—Bj1) =£i . (7.22)

Using the relation E = hv between the energy of a photon and the fre-
quency v of its radiation, the frequencies in the rotation spectrum of the
molecule are

h

vj :ij

In the case of 12CO, the coefficient of j evaluates to 113.1724 GHz and
spectral lines occur at multiples of this frequency (Figure 7.2).

In the classical limit of large j, J = jh is the molecule’s angular
momentum, and this is related to the angular frequency w at which the
molecule rotates by J = Iw. When in equation (7.23) we replace jh by
Iw, we discover that the frequency of the emitted radiation v is simply
the frequency w/2m at which the molecule rotates around its axis. This
conclusion makes perfect sense physically. Now, because of the form of
the Hamiltonian, the energy eigenstates are also the eigenstates of J, and
J2. Therefore in any energy eigenstate, (J2> = j(j + 1), and for low-
lying states with m = 0 and j ~ O(1), j(j + 1) is significantly larger
than j2. Therefore v; in (7.23) is smaller than the frequency at which the
molecule rotates when it is in the upper state of the transition. On the
other hand, v; is larger than the rotation frequency /(j —1)j % of the
lower state. Hence the frequency at which radiation emerges lies between
the rotation frequencies of the upper and lower states. Again this makes
sense physically. As we approach the classical regime, j becomes large
50 j(j +1) ~ j2 ~ (j — 1)j and the rotation frequencies of the upper
and lower states converge, from above and below, on the frequency of the
emitted radiation.

(7.23)
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Figure 7.2 The rotation spectrum of CO. The full lines show the measured frequencies
for transitions up to j = 38 — 37, while the dotted lines show integer multiples of the
lowest measured frequency. Up to the line for j = 22 — 21 the dotted lines are obscured
by the full lines except at one frequency for which measurements are not available.
For j > 22 the separation between the dotted and full lines increases steadily as a
consequence of the centrifugal stretching of the bond between the molecule’s atoms.
Measurements are lacking for several of the higher-frequency lines.

Measurements of radiation from 113 GHz and the first few multiples
of this frequency provide one of the two most important probes of inter-
stellar gas.! In denser, cooler regions, hydrogen atoms combine to form
H, molecules, which are bisymmetric and do not have an electric dipole
moment when they are simply rotating. Consequently, these molecules,
which together with similarly uncommunicative helium atoms make up
the great majority of the mass of cold interstellar gas, lack readily ob-
servable spectral lines. Hence astronomers are obliged to study the cold
interstellar medium through the rotation spectrum of the few parts in 10®
of CO that it contains.




