額外練習習題

1. Consider an electron moving from left  to right  and is scattered by a step potential at . The step potential is:  and . 
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A wave packet formulation of this scattering can be approximated by considering the stationary energy eigenfunction of this step potential. The solution is:
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Calculate the probability density as a function of  in terms of  at  It is a constant at  . 

解答：。
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10. Using the Euler relations between exponential and trig functions, we find
w= A(e"x +e’") =24cos(x).

Normalization: E{ vydx = 4A2_[:{cos2 (x)dx=44’7=1. Thus A= L.
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(b) The probability of being in the interval [0, 7/ 4]is
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Consider a wave packet formed by using the wave function
Ae™, where A is a constant to be determined by normaliza-
tion. Normalize this wave function and find the probabilities
of the particle being between 0 and 1/a, and between 1/a
and 2/a.

Strategy This wave function is sketched in Figure 6.1. We
will use Equation (6.8) to normalize W. Then we will find
the probability by using the limits in the integration of
Equation (6.7).

Solution If we insert the wave function into Equation
(6.8), we have

J A% dx = 1
Because the wave function is symmetric about x = 0, we can
integrate from 0 to oo, multiply by 2, and drop the absolute
value signs on lxl.
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The coefficient A = Va, and the normalized wave func-
tion ¥ is

v = Vae ¥

‘We use Equation (6.7) to find the probability of the particle
being between 0 and 1/a, where we again drop the absolute
signs on x| because x is positive.
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Figure 6.1 The wave function Ae ! is plotted as a function
of x. Note that the wave function is symmetric about x = 0.

The integration is similar to the previous one.
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The probability of the particle being between 1/a and 2/«
is
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We conclude that the particle is much more likely to be
between 0 and 1/a than between 1/a and 2/a. This is to be
expected, given the shape of the wave function shown in
Figure 6.1.
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Figure 11.3. Plane wave scattering from a
discontinuous step potential; two cases where

(@) E > Vy > 0and(b) E > 0> Vare shown.
The real part of the incident and reflected amplitude
(solid and dotted curves for x < 0) and transmitted
(dashed curve for x > 0) are illustrated.
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The wave function of a parucle in a one-dimensional
box of width L is ¢s(x) = A sin(mx/L). If we know the
particle must be somewhere in the box, what must be
the value of A?

R





image4.png
48. We can determine the value using the normalization condition:
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10. A wave function ¥ is A(e® + ¢™®) in the region
—7 < x < and zero elsewhere. Normalize the wave
function and find the probability of the particle being
(a) between x=0 and x=7/8, and (b) between
x=0and x=7/4.




