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Emission spectrum of the sun as measured above the Earth’s atmosphere
(AMO) compared to the black body spectrum of an object at 5777 K. Image
Credit: Solar AMO spectrum with visible spectrum background (en) by
Danmichaelo [Public domain], from Wikimedia Commons
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Mather and George F. Smoot "for their discovery of the blackbody
form and anisotropy of the cosmic microwave background radiation"
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Aluminum, anodized
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“for groundbreaking contributions to our understanding of complex physical systems”
with one half jointly to

Syukuro Manabe
Princeton University, USA

Klaus Hasselmann
Max Planck Institute for Meteorology, Hamburg, Germany

“for the physical modelling of Earth’s climate, quantifying variability and reliably predicting
global warming”
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Giorgio Parisi
Sapienza University of Rome, Italy

“for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to
planetary scales”
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FIG. 1. Plot in (X,Y,Z) phase space of numerical simu-
lation of a circuit version of Lorenz system at (o, 3, Ra) =
(10,8/3,33.5), from Weady et al. (2018).
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FIG. 5. Approximately as envisioned by Svante Arrhenius in
1896 [6], a “one-layer atmosphere” over Earth that absorbs
and emits the outgoing infrared radiation from the surface
Fc'. We assume the outgoing atmospheric infrared emis-

sion is the same as the incoming, and that the atmosphere is
isothermal, so that Fa* = F4T = F4. Modified from [5].




Manabe’s climate model

Syukuro Manabe was the first researcher to
explore the interaction between radiation
balance and the vertical transport of air
masses due to convection, also taking account
of the heat contributed by the water cycle.

ATMOSPHERE

Incoming
solar radiation

Infrared heat radiation from the
ground is partially absorbed in the
atmosphere, warming the air and
the ground, while some radiates
out into space.

Hot air +
latent heat

Hot air is lighter than cold air, so it rises
through convection. It also carries water
vapour, which is a powerful greenhouse
gas. The warmer the air, the higher the
concentration of water vapour. Further up,
where the atmosphere is colder, cloud
drops form, releasing the latent heat
stored in the water vapour.




Carbon dioxide heats

the atmosphere

Increased levels of carbon
dioxide lead to higher
temperatures in the lower
atmosphere, while the upper
atmosphere gets colder.
Manabe thus confirmed that
the variation in temperature
is due to increased levels of
carbon dioxide; if it was
caused by increased solar
radiation, the entire atmosp-

here should have warmed up.
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= 150 ppm CO,

T T
-80 -70 -60 -50 -40 -30 -20 -10 O 10
Temperature (°C)

Temperature at the surface
fell by 2.28°C when the level
of carbon dioxide halved.

It increased by 2.36°C when
the level of carbon dioxide
doubled.

Source: Manabe and Wetherald (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity, Journal of
the atmospheric sciences, Vol. 24, Nr 3, May.




Identifying fingerprints in the climate

Klaus Hasselmann developed methods for distinguishing between
natural and human causes (fingerprints) of atmospheric heating.
Comparison between changes in the mean temperature in relation to
the average for 1901-1950 (°C).

== Observations

=== Calculations that show
the effectof only natural
sources, such asvolcanic
eruptions.

Calculations of the effect

of both naturaland
human sources.

Volcanic eruptions
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Source: Hegerl and Zweirs (2011] Use of models in detection & attribution of climate change, WIREs Climate Change.
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3 On a Heuristic Point of View about
the Creation and Conversion of Lightf

A. EINSTEIN

THERE exists an essential formal difference between the theoretical
pictures physicists have drawn of gases and other ponderable
bodies and Maxwell's theory of electromagnetic processes in
so-called empty space. Whereas we assume the state of a body to

be completely determined by the positions and velocities of an.’

albeit very large. still finite number of atoms and electrons. we use
for the determination of the electromagnetic state 1n space con-
tinuous spatial functions, so that a finite number of wvariables
cannot be considered to be sufficientto fix completely the electro-
magnetic state in space. According to Maxwell's theory. the

energy must be considered to be a conunuous functon i space
for all purely electromagnetic phenomena. thus also for light.
while according to the present-day ideas of physicists the energy
of a ponderable body can be written as a sum over the atoms and
electrons. The energy of a ponderable body cannot be split into
arbitrarily many. arbitrarily small parts. while the energy of a
light ray. emitted by a pomnt source of light 15 according to
Maxwell's theorv (or 1n general according to any wave theory) of
light distributed continuously over an ever increasing volume.

The wave theorv of light which operates with continuous

functions in space has been excellentlyjustified for the representa-
tion of purely optical phenomena and 1t 1s unlikely ever to be
replaced by another theorv. One should. however. bear in mind
that optical observations refer to time averages and not to

t Ann, Physik 17, 132 (1905).
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In fact. 1t seems to me that the observations on “black-body
racdiation . photoluminescence. the production of cathode rays by
ultraviolet light and other phenomena mnvolving the emission or
conversion of light can be better understood on the assumption
that the energv of light 1s distributed discontinuously in space.
According to the assumption considered here. when a light ray
starting from a point 1s propagated. the energy is not con-
tinuously distributed over an ever increasimng volume. but it

consists of a finite number of energy quanta. localised 1n space.
which move without being divided and which can be absorbed or

emitted only as a whole.

8. On the Production of Cathode Rays by Illumination
of Solids

The usual 1dea that the energy of light 1s continuously distri-
buted over the space through which it travels meets with especially
great difficulies when one tries to explamn photo-electric
phenomena. as was shown in the pioneering paper by Mr.
Lenard ®

According to the idea that the incident light consists of energy
quanta with an energy Rfv/N, one can picture the production of
cathode rays by light as follows. Energy quanta penetrate into a
surface laver of the bodv. and their energv 1s at least partlv

FCEERUE Photoelectric Effect

d
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Photoelectric effect: Light
absorbed by a surface causes
electrons to be ejected.
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Figure 1-3 Photoelectric
effect data showing a plot
of retarding potential
necessary to stop electron
flow from a metal
(lithium), or equivalently,
electron kinetic energy, as
a function of frequency of
the incident light. The
slope of the line is A/e.
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For each material,
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so the plots have same slope //e but different
intercepts —f/e on the vertical axis.
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Thus all four aspects of the photoelectric effect are neatly accounted for by Einstein's theory. But Lamb and
Scully showed that this theory, while feasible, is not the only possible one. They were able to find an entirely

different theory of the photoelectric effect, one that did not invoke the concept of the particle nature of light at
all. Their conclusion was that the photoelectric effect does not constitute proof of the existence of photons.

The theory of Lamb and Scully treated atoms quantum-mechanically, but regarded light as being a purely
classical electromagnetic wave with no particle properties. In such a “semiclassical” theory, the atom was
quantized in the usual way into energy levels according to the Schrédinger

equation. These energy levels were simplified to a ground state g and a series of free-electron states & that
formed a continuum (see Figure 2-2). The atom interacted with a classical time-varying electromagnetic field,
which they wrote as a single-frequency sinusoidal wave (monochromatic light),

E = E,coswt (2.2)

This electromagnetic wave was treated as a perturbation, whose interaction potential with the atom was given
in the dipole approximation by

V() = —eE x(t) (2.3)



We recognize-eE as the force on the electron that causes its ejection; ¥{(?) is the time-dependent potential
associated with that force.

Using standard methods of time-dependent perturbation theory in quantum mechanics, Lamb and Scully
found the following expression for the probability that the perturbing field causes a transition from the ground
state g to an excited state k—i.e., that the incident light ionizes the atom and liberates the electron:

eByl* o (%_ ) (;)]

x50

Py(t) = (2.4)

Here X;, is the matrix element of x between the two states and E;is the energy of the kth state measured
relative to that of the ground state.

This result represents the resonance condition for excitation: excitation only occurs when the incoming

frequency o closely matches that required by the energy-level separation, “% = Ex/h  As can be seen, the
denominator in Equation (2.4) becomes zero for this value; until the light frequency reaches w;, no electron
will be ejected, while above that frequency electrons will appear. In this way one can account for the
threshold phenomenon, which is just the work function of the metal used. Equation (2.1), therefore, can be
thought of as a natural consequence of the resonance condition for excitation by an electromagnetic wave,
rather than a reflection of microscopic energy conservation for light, as proposed by Einstein.

The second aspect of the photoelectric effect, that the photocurrent is proportional to the light intensity, is
similarly accounted for. The intensity of the light is proportional to B . But from Equation (2.4), the

probability of electron emission is just proportional to Ey.

The first property of the photoelectric effect, that electrons are emitted immediately after the onset of
illumination, is treated as follows. Equation (2.4) represents the probability for a transition to one of the
contimmm levels k. But the probability of emission of a photoelectron is the probability of a transition to any
such level, which is the sum of Equation (2.4) over all k. Lamb and Scully did this sum, and showed that the
transition probability was proportional to the time. This implied that the transition rate was constant, so that
even at short times electrons would be emitted.

Thus all aspects of the photoelectric effect were accounted for without resort to Einstein's Nobel Prize-
winning argument. Moreover, the random, unpredictable character of individual quantum-mechanical events
was properly preserved, but in this model, was due not to the quantum nature of light, but to that of matter.
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