Classification of topological insulator
and topological superconductor
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Symmetry as an
organizing principle

=» Topology as an
organizing principle

Crystal form of the seven crystal systems
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Topological systems we have studied so far:
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Helical SC

1d 2d 3d P S| Lect
Quantum Hall mmsulator| 0O Z 0[]0 0 0| 5
Topological msulator 0 Zo Z2|—1 0 0] 78
Chiral superconductor |Zs Z 0 [0 1 0] 12,13
Helical superconductor |Z2 Zo Z |—1 1 1] 14,15




Symmetries of a Hamiltonian

« Unitary symmetry (translation, rotation, reflection ...)
Decompose H to irreducible blocks

* Beyond unitary symmetry

(1) Time-reversal symmetry (anti-unitary)

THT'=H,, T=UK

0O noTRS
TRS =+ +1 TRSwith 72 —1 (integer spin)

-1 TRS with 72 = —1 (half-integer spin)

(2) Particle-hole symmetry (anti-unitary)

PH P'=-H_,, P=U,K

0 noPHS
PHS ={ +1 PHS with P> =1 (odd parity: p-wave)
-1 PHS with P? = —1 (even parity: s-wave)



(3) TRS x PHS = Chiral symmetry (unitary) S=TP

TPH, (TP) ' =-H, $2=1 ,-1 (chose +1)

Unitary, but not the usual one
« Any unitary operator that anticommutes with the band Hamiltonian,
SH(k)S-' = —H(k), qualifies as a chiral symmetry.

« Bipartite lattices with NN coupling only has
the chiral symmetry graphene

SSH model



A time-line of the periodic table for non-interacting fermions

Cartan, Dyson, Quantum Hall Topological
symmetry space 3-fold way insulator insulator
Anderson SOCin 2D Altland- Schnyder et al’s
insulator localization Zirnbauer classification
Wi ! ! classes ? it
igner, . itaev
random matrix Scahng. thepry periodic
of localization table

1930 1940 1950 1960 1970 1980 1990 2000 2010



Connection with the classification of disordered systems

First, Anderson localization (Anderson, 1958)

In the modern literature, the phenomenon of exponential decay of eigenfunctions
of a quantum system in a disordered environment is called Anderson localization,

In 3 dimension extended

localized localized

localized
> E

extended




VoLuME 42, NUMBER 10 PHYSICAL REVIEW LETTERS 5 MARCH 1979

Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions

E. Abrahams
Serin Physics Laborvatory, Rulgers University, Piscataway, New Jersey 08854

and

P. W. Anderson,'® D. C. Licciardello, and T. V. Ramakrishnan(®

Joseph Henvy Labovatories of Physics, Princeton University, Princeton, New Jevsey 08540
(Received 7 December 1978)

Arguments are presented that the 7 =0 conductance G of a disordered electronic system de-
pends on its length scale L in a universal manner. Asymptotic forms are obtained for the
scaling function 3(G) =dInG/dInL, valid for both G < G,~e*/l and G> G,. Inthree dimensions,
G, is an unstable fixed point. In two dimensions, there is no true metallic behavior; the con-
ductance crosses over smoothly from logarithmic or slower to exponential decrease with L.

Universal scaling function

1 g=Gl(e’/h)  extended Flow follows the
4=3 increase of L
= MIT
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2o & : :
= d=2 Wave functions of disordered systems
< in 1D and 2D are localized
o .
y Localized
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* Exception (in 2D): Quantum Hall effect, spin-orbit interaction

[Exception 1]

Quantum Hall effect (1980)

Localized states vs extended states

------------
.....

b

~ disorder

Abraham et al's conclusion does not apply

(since QHE is in a different universality class)

Broadened LL due to

The importance °
of localized and

extended states |

Aoki, CMST 2011

T

Filling factor



Prog. Theor. Phys. Vol. 63, No. 2, February 1980, Progress Letters

[Exception 2]  Spin-Orbit Interaction and Magnetoresistance
in the Two Dimensional Random System

Shinobu HIKAMI, Anatoly I. LARKIN®¥ and Yosuke NAGAOKA

Research Institute for Fundamental Physics
Kyoto University, Kyoto 606
(Received November 5, 1979)

Effect of the spin-orbit interaction is studied for the random potential scattering in two
dimensions by the renormalization group method. It is shown that the localization behaviors
are classified in the three different types depending on the symmetry. The recent observation
of the negative magnetoresistance of MOSFET is discussed.

*
(}-SP 3'1 4

orthogonal (TR preserved, spin preserved),

dino/dInL

unitary (TR broken),

symplectic (TR preserved, spin broken)

In o Ostrovsky'’s slide



Connection with Random matrix theory

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER ¢ NOVEMBER-DECEMBER 1962

The Threefold Way.
Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics

FrEEmaAN J. Dyson

Institute for Advanced Study, Princeton, New Jersey
(Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, an
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
mthor’nhoorydmmxemnbh,mwhlch@nthmpo-ibletypumfound,lnhmtobein

ce with the Wigner classification of co-representations. In particular, it is proved
Mthemmtmdﬁnddmuixmnble defined with a symmetry group which may be com-

pletely arbitrary, reduces to a direct product of independent 1rrodueiblo ennmbhl uch of which
belongs to one of the three known types.

Orthogonal, unitary, symplectic




Energy spectra of complex nuclei
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Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance
spectroscopy, X, Phys. Rev. C 6, 1854-1869 (1972).

Problem : excitation spectrum of heavy nuclei
many-body problem; do not know Hamiltonian

Wigner Solution : write Hamiltonian as random matrix



Wigner-Dyson classes

TABLE I. Summary of Dyson’s threefold way. The Hermitian
matrix ‘H (and its matrix of eigenvectors U) are classified by an
index Fe{l.24}, depending on the presence or absence of
time-reversal (TRS) and spin-rotation (SRS) symmetry.

ﬁ TRS SRS ’HH!H L"F

. 2=
l yes yes real orthogonal Al GOE: T*=1
2 no irrelevant complex unitary A GUE: T%=0
4 yes no real quaternion symplectic All GSE: T2=-1

Spectral distribution of random matrix
1.4

L2

1
Distribution of NN
spacing = .

level repulsion: ¢. o
P(s<<1) ~ sP

3 Fig from Altshuler’s ppt



Altland-Zirnbauer classes
PHYSICAL REVIEW B VOLUME 55, NUMBER 2 I JANUARY 1997-11

Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures

Alexander Altland and Martin R. Zimbauer | 2THICIe-hOle symmetry
Institut fur Theoretische Physik, Universitat zu Koln, Zulpicherstrasse 77, 50937 Koln, Germany
{Received 4 March 1996)

Normal-conducting mesoscopic systems in contact with a superconductor are classified by the symmetry
operations of time reversal and rotation of the electron’s spin. Four symmetry classes are identified, which
correspond to Cartan’s symmetric spaces of type C, C1, D, and DIIL. A detailed study is made of the systems
where the phase shift due to Andreev reflection averages to zero along a typical semiclassical single-electron
trajectory. Such systems are particularly interesting because they do not have a genuine excitation gap but
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=) Classifying topological insulator/superconductor using AZ classes

PHYSICAL REVIEW B 78, 195125 (2008)

Classification of topological insulators and superconductors in three spatial dimensions

Andreas P. Schnyder.' Shinsei Ryu,! Akira Furusaki,” and Andreas W. W. Ludwig®
'Kavli Institute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA
*Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
':‘De;mrmwm of Physics, University of California-Santa Barbara, Santa Barbara, California 93106, USA o
(Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)



- Wigner-Dyson (1951 -1963) : "three-fold way"

- Verbaarschot (1992 -1993)

- Altland-Zirnbauer (1997) : "ten-fold way"

complex nuclei

chiral phase transition in QCD

mesoscopic SC systems

3 internal symmetries

Cartan’s label TRS PHS SLS  d= d=2  d=3
Standard A (unitary) 0 0 0 - Z - IQH,AQH
(Wigner-Dyson) Al (orthogonal) +1 0 0 - - -
All (symplectic) -1 0 0 - Z, 7, 2D/3DTI
Chiral AlII (chiral unitary) 0 0 1 Z E Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 oy - - SSH (with 3
CII (chiral symplectic) -1 -1 1 Z - Z, symm)
, Kitev chain
BdG D 0 +1 0 Zy 7 - Chiral p-wave
Bogoliubov = , e . ] - ]
- " ~+ Helical p-wave
de Gennes i : + : % &y j He-3 B
CI +1 -1 1 - - Z

(3x3-1)+2=10
5 non-trivial classes in each dimension



Periodic table: different approaches

1. Continuous systems: Dirac Hamiltonian, Clifford algebra
Bernard and LeClair, J Phys A 2002

2. Disordered systems: Surface state localization, random matrix

theory, nonlinear sigma model Ivanov, 9911147, Schnyder et al PRB 2008,
Ryu et al, NJP 2010 Bulk-edge correspondence
3. Lattice systems: Homotopy theory Schnyder et al PRB 2008,

K-theory Kitaev AIP Conf Proc 2009
Related to classification of symmetric spaces (cartan 1926-27)

4. Response theory, quantum anomaly Ryu et al, PRB 2012



Periodic table for topological insulators and superconductors

Hidden order in the
classification of topology
California Institute of Technology, Pasadena, CA 91125, U.S.A.

Alexel Kitaev AIP Conf Proc 2009

Abstract. Gapped phases of noninteracting fermions, with and without charge conservation and time-reversal symmetry.
are classified using Bott periodicity. The symmetry and spatial dimension determines a general universality class, which
corresponds to one of the 2 types of complex and 8 types of real Clifford algebras. The phases within a given class are further
characterized by a topological invariant, an element of some Abelian group that can be 0, 7, or Z,. The interface between
two infinite phases with different topological numbers must carry some gapless mode. Topological properties of finite systems
are described in terms of K-homology. This classification is robust with respect to disorder, provided electron states near the
Fermi energy are absent or localized. In some cases (e.g., integer quantum Hall systems) the K -theoretic classification is stable
to interactions, but a counterexample is also given.

Symmetry d

AZ O

A 0 0 0 O zZ 0 Z 0 Z 0 Z |IQHE, AQHE
ATII 0 0 I Z 0 Z 0 Z 0 Z 0 |T-fluxstate
Al | 1 0 0|0 0 0 Z 0 Zo Zo Z
BDI| 1 1 11Z 0 0 0 Z 0 Zo Z, |SSH

D 0 1 0O Z Z 0O 0 0 Z 0 Zo [Kitaevchain,chiral p-wave (spiniess)
DIII| -1 1 | | Zo Zo Z 0O 0 0 Z 0 [|helical p-wave (spinful), He 3

All | -1 0 0 0 Zo Zo Z 0O 0 0 Z |2D/3DTI
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Topology of lattice system

“Flattened” Hamiltonian Q, Space of Q, matrix:
™ . Grassmannian For chiral system,
________________ U(m+n) dr
% G,pm(C) = T omUom O =l
— m (m)U (n) g 0
TABLE Il Altland-Zirnbauer classes
Cartan’s label T P S| 1d 2d 3d|Space of Hamiltonians
Standard A (unitary) 0 0 0[O0 Z 0 [{Qk € Gmsnm(C)}
(Wigner-Dyson) [Al (orthogonal) +1 0 0|0 O O [{Qk € Gmenm(C)|Qk = Q-k}
All (symplectic) -1 0 0|0 Z2 Z:|{Qk € Gam+2n,2m(C)|icyQr(—ioy) = Q-k}
Chiral AIII (chiral unitary) 0 0 1|72 0 Z [{aeclU(m))}
(sublattice) BDI (chiral orthogonal)[+1 +1 1| Z 0 0 |[{qx € U(m)|qr = q-k}
CII (chiral symplectic) -1 =1 1| Z 0 Zs|{qr € U(2m)|ioyqy(—ioy) =q_i}
BdG D 0 +1 0|1Z2 Z 0 |{Qk € Gomm(C)|mQrT2e = = Qi }
(superconductor)|C 0 1010 Z 0 |{Qr€Gomm(C)|myQi7y = —Q=-k}
DIII ~1 41 1|Zs Zy Z |{qxr € U2m)|a} = —q-i}
CI +1 -1 1|0 0 Z|{qx€U(m)|as = qx}




The topology is a result of the disconnected pieces of
the space X of the Hamiltonian matrix. That is, the
topological number counts the disconnected pieces of the
mapping from 79 — X . One can start from studying the
mapping S¢ — X, which is characterized by the homo-
topy group mg(X). Rigorously speaking, the base space
T9 can be replaced by S? only if m;(X) =0, for all i < d
(Avron et al., 1983). So some information could be lost
by such a simplification (which means that a lattice sys-
tem is replaced by a continuous one).




Topological numbers of complex classes

* Class A in even dim: Chern number

“‘l

(Gern (C)) — 01
(Gm—l—n *m({{:)) = Note:
(Gern m((c)) = () =« ((72 1(C)) Z

. 1 : iF\"
" nl S 2T

* Class Alll in odd dim (with chiral symm): winding number

dcodd((U(n)) = Z, o {0 qkj
nd@ven(a» (n)) = 0. gl 0

(_1)71._”[ / ; n+1 N [( _10, )ZTH_I}
17 n = ' i
Pt (2n + 1)! Jronss \ 27 i L

* The Z numbers in real classes are also related to these two
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Overview of topological phases

« Symmetry-protected topological (SPT) phase

A phase of matter with a gap and a symmetry G that protect its topology

Fermion Boson

» Integer quantum Hall effect * Photonic systems
Non- « Topological insulator * Phonons
interacting . . Magnons

. .. « Bosonic Tl
Interacting | , * Bosonic SC

Spin

« Haldane’s odd integer-spin chain




 Topological-ordered phase

A phase of matter with degenerate GND state, fractional QP, and
long-range entanglement.

Fractional quantum Hall effect

Strongly Chiral spin liquid

Interacting

Z, spin liquid (toric code)




