Weyl semimetal

- A. Classification of Weyl node
- B. Linear Weyl node
 - 1. Multiplet of nodes due to symmetry
- C. From Dirac to Weyl
- D. The Burkov-Balent multilayer model
 - 1. Fermi arc of surface states
 - 2. Property of Fermi arc

Band theory of solids

Accidental degeneracy: 2 levels (2D, 3D)

- The degeneracy that occurs coincidentally, without the protection by symmetry
- Wigner-von Neumann "theorem" (1929):

It is necessary to adjust 3 parameters in to obtain a 2-fold degeneracy. Consider a system with 2 levels,

 $H = d_0(\vec{k}) + d_x(\vec{k})\sigma_x + d_y(\vec{k})\sigma_y + d_z(\vec{k})\sigma_z$ $\rightarrow E_{\pm} = d_0 \pm \sqrt{d_x^2 + d_y^2 + d_z^2}$ $\rightarrow \text{degeneracy only when } d_x = d_y = d_z = 0 \quad \text{(i.e., Co-dimension is 3)}$

- 3D: one (or several) point degeneracy in 3D k-space
- 2D: unlikely to have a point degeneracy in 2D k-space

Level crossing leads to Dirac cone

• 2 level crossing in 2D (SS of TI, graphene)

e.g.,
$$H_{SS} = \alpha (\boldsymbol{\sigma} \times \mathbf{k})_z + O(k^2)$$

Berry curvature

$$F_z^\pm=\mp\pi\delta^2({\bf k})$$

2 level crossing in 3D (Weyl semi-metal)

e.g.,
$$H_{2\times 2}(\vec{k}) = \vec{k} \cdot \vec{\sigma}$$

 $\vec{F}_{\pm} = \mp \frac{1}{2} \frac{\hat{k}}{k^2}$ (Recall the Berry curvature of Zeeman coupling)

- A degenerate point is a "monopole" in momentum space (source or sink of Berry flux)
- From now one, we will call the degenerate point between
 2 levels (in 3D) as a Weyl point, instead of a Dirac point.

Types of fermion in Particle physics

- Dirac fermion (1928)
 - Relativistic spin ½ fermion
 - 4 components
 - Electron, proton ...
 - Weyl fermion (1929)
 - Massless ½ fermion
 - 2 components
 - Not found in nature
- Majorana fermion (1937)
 - Being its own anti-particle
 - 2 independent components
 - Neutrino?

*

 φ_2

Realizations in Solid-state phys

Graphene with spin (2004)

 φ_1 φ_2

 φ_1

 φ_2

 φ_3

 φ_4

TaAs... 砷化鉭 (2015)

2015)

Semi-SC hybrid structure ... (2012, 14, 16 ...)

Chirality of Weyl point

• Near a Weyl point

 $H_{2\times 2}(\vec{q}) = h_0(\vec{q}) + \vec{h}(\vec{q}) \cdot \vec{\sigma}, \qquad \vec{q} \equiv \vec{k}_0 + \vec{k}$ $\simeq h_0(\vec{q}) + \vec{h}\left(\vec{k}_0\right) \cdot \vec{\sigma} + \frac{\partial h_i}{\partial k_j} k_j \sigma_i$ $= \vec{v}_i \cdot \vec{k} \sigma_i$

手徵 Chirality (or helicity)

$$\chi \equiv \operatorname{sgn}\left[\operatorname{det}\left(\frac{\partial h_i}{\partial k_j}\right)\right] \text{ or } \operatorname{sgn}(\vec{v}_1 \cdot \vec{v}_2 \times \vec{v}_3)$$

e.g.,
$$H = \pm v_F \vec{k} \cdot \vec{\sigma}, \qquad \chi = \pm$$

Berry curvature

$$\vec{F}_{-}^{\chi} = \frac{\chi}{2} \frac{\hat{k}}{k^2}$$

• Berry flux (~monopole charge) is quantized $\Phi_F = 2\pi C_1$.

Stability of Weyl point

Weyl point is stable against perturbation

 $H = \pm v_F \vec{\sigma} \cdot \vec{k} + H'$

a general perturbation: $H' = a(\vec{k}) + \vec{b}(\vec{k}) \cdot \vec{\sigma}$

Shift position of node Renormalize $V_{\rm F}$

e.g.,
$$H = v_F \vec{\sigma} \cdot \vec{k} + m\sigma_z$$

Weyl node can only appear/disappear by • pair creation/annihilation

二宮正夫

Nielsen-Ninomiya theorem (1981):

Aka Fermion-doubling theorem, no-go theorem

In a lattice, massless Weyl fermions must appear in pairs with opposite chiralities.

• Energy band in <u>1D</u> BZ

Crossings need to appear in pairs

• Energy band in <u>3D</u> BZ

Total Berry flux from Weyl points needs to be zero.

- To be precise, for a lattice in odd space dimensions, without breaking translation symmetry and chiral symmetry, massless Weyl fermions must appear in pairs.
 (defined in high energy. For massless fermion, chirality = helicity)
- 1. This doubling property used to be a problem in lattice QCD
 2. In 2 dim, chirality is not well-defined. For example, it's possible to open only one Dirac point in graphene.

Symmetry and Weyl point

٠

٠

$$H = \pm v_F \vec{\sigma} \cdot (\vec{k} - \vec{k}_0) \qquad \text{A monopole at } \mathbf{k}_0$$
TR Symm
$$\vec{k} \rightarrow -\vec{k}, \quad \vec{\sigma} \rightarrow -\vec{\sigma}$$

$$H \rightarrow H' = \pm v_F \vec{\sigma} \cdot (\vec{k} + \vec{k}_0) \qquad \Rightarrow \text{A monopole at } -\mathbf{k}_0$$
with the same chirality
SI Symm
$$\vec{k} \rightarrow -\vec{k}, \quad \vec{\sigma} \rightarrow \vec{\sigma}$$

$$H \rightarrow H' = \mp v_F \vec{\sigma} \cdot (\vec{k} + \vec{k}_0) \qquad \Rightarrow \text{A monopole at } -\mathbf{k}_0$$
with the opposite chiralities

• Nielsen-Ninomiya theorem: always a pair with *opposite* chirality

TRS	IS	Implications	Min. number
×	×	Weyl nodes can be at any \vec{k} and may have different energies. ¹¹³	2
~	×	Weyl node at $\vec{k}_0 \Leftrightarrow$ Weyl node of same chirality at $-\vec{k}_0$.	4
×	1	Weyl node at $\vec{k}_0 \Leftrightarrow$ Weyl node of <i>opposite</i> chirality at $-\vec{k}_0$.	2
\checkmark	~	Not topologically stable	none
	2015 2		

Dirac point (but can be protected by crystal symmetry)

From Dirac SM to Weyl SM

Not topo stable

Young et al, PRL 2012

Candidates of Weyl semi-metals

(Fermi energy needs to be near a Weyl point)

Theory

• Iridium pyrochlores

 $(R_2 Ir_2 O_7, R is Rare Earth, Wan et al, PRB 2011)$

- Ferromagnetic spinel
 (HgCr₂Se₄, Xu et al, PRL 2011, double Weyl)
- Transition metal monopnictide (break SIS) (TaAs, Huang, Nat Comm 2015, PRX 2015; Weng, PRX 2015 NbAs, theory and exp't, Xu, Nat Phys 2015; TaP...)
- strontium silicide

(SrSi₂, Huang, PNAS 2016, double Weyl)

• WTe_2 (... Li et al, Nature Comm 2017)

Also, line node, Cu_3PdN , Yu, PRL 2015, PbTaSe₂, Bian 1505.03069 And more.

See Armitage, Mele, and Vishwanath, Rev Mod Phys (2018).

Experiment

- Xu et al, Science 2015
- Lv et al, PRX 2015
- Lv et al, Nat Phys 2015
- Yang et al, Nat Phys 2015

Transition metal monopnictide 磺族

- With nonsymmorphic space group
- DP \rightarrow WP by breaking SIS

24 Weyl nodes

Huang et al, Nature Comm 2015

Physics related to Weyl fermions

- 1. Anomalous Hall effect
- 2. Fermi arc of surface state
- 3. Chiral anomaly
- 4. Chiral magnetic effect
- 5. Bulk photovoltaic effect (Weng, Nat material, 18, 428, 2019)

Use

Burkov-Balent model

as an example

6. ...

WP as a critical point of QPT:

Burkov-Balent model - multi-layer heterostructure (Burkov and Balent PRL 2011)

Two SS's from one TI slab	$\mathbf{H} = v\tau_z \otimes (\boldsymbol{\sigma} \times \mathbf{k}_\perp) \cdot \hat{z} + m1 \otimes \sigma_z + t_s \tau_x \otimes 1$
Multiple layers	$\hat{H} = \sum_{l} \left[v \tau_z (\boldsymbol{\sigma} \times \mathbf{k}_\perp) \cdot \hat{z} + m \sigma_z + t_s \tau_x \right] c_l^{\dagger} c_l$
	+ $\sum_{l} t_d (\tau_+ c_l^{\dagger} c_{l+1} + \tau c_l^{\dagger} c_{l-1}),$
	$\tau_{\pm} = (\tau_x \pm i \tau_y)/2, c_l = (c_{lu}, c_{ld})^T$
Fourier transform	$c_l^{\dagger} = \frac{1}{\sqrt{N}} \sum_{k_z} e^{i l dk_z} c_{k_z}^{\dagger}$
-	$\hat{H} = \sum_{k_z} \left[v \tau_z (\boldsymbol{\sigma} \times \mathbf{k}_\perp) \cdot \hat{z} c^{\dagger}_{k_z} c_{k_z} \right]$
	$+ m\sigma_z c^{\dagger}_{k_z} c_{k_z}$
	$+ t_s au_x c^{\dagger}_{k_z} c_{k_z}$
	+ $t_d(e^{-ik_z d}\tau_+ c^{\dagger}_{k_z}c_{k_z} + e^{ik_z d}\tau c^{\dagger}_{k_z}c_{k_z})$
	$= \sum_{k_z} \begin{pmatrix} h_0 + m\sigma_z & t_s + t_d e^{-ik_z d} \\ t_s + t_d e^{ik_z d} & -h_0 + m\sigma_z \end{pmatrix} c_{k_z}^{\dagger} c_{k_z}$
	$\equiv \sum_{k_z} H_{k_z} c^{\dagger}_{k_z} c_{k_z}, \text{Each } k_z \text{ is an independent subsystem}$

$$\begin{aligned} \mathsf{H}_{k_z} &= \tau_z \mathsf{h}_0 + m\sigma_z \\ &+ t_s \tau_x + t_d (e^{-ik_z d} \tau_+ + e^{ik_z d} \tau_-) \\ &+ \mathbf{h}_0 = v(\boldsymbol{\sigma} \times \mathbf{k}_\perp) \cdot \hat{z} \end{aligned}$$

We'd like to block-diagonalize the 4x4 matrix:

Unitary
rotation
$$U = \begin{pmatrix} 1 & 0 \\ 0 & \sigma_z \end{pmatrix} \qquad UU^{\dagger} = U^{\dagger}U = 1$$

$$\tau_{x,y} \rightarrow U^{\dagger}\tau_{x,y}U = \tau_{x,y}\sigma_z,$$

$$\sigma_{x,y} \rightarrow U^{\dagger}\sigma_{x,y}U = \tau_z\sigma_{x,y}.$$

$$H_{k_z} = h_0 + m\sigma_z + [t_s\tau_x + t_d(e^{-ik_zd}\tau_+ + e^{ik_zd}\tau_-)]\sigma_z$$

$$H_{k_z} = h_0 + \underbrace{\left[m + \tau_z\sqrt{t_s^2 + t_d^2 + 2t_st_d\cos(k_zd)}\right]\sigma_z}_{M_{\tau_z}(k_z)} \quad \text{Effective mass for layer-}k_z$$

$$= v(\boldsymbol{\sigma} \times \mathbf{k}_{\perp}) \cdot \hat{z} + M_{\tau_z}(k_z)\sigma_z,$$

Band structure

$$\varepsilon_{\pm}^{\tau_{z}} = \pm \sqrt{v^{2}(k_{x}^{2} + k_{y}^{2}) + M_{\tau_{z}}^{2}(k_{z})}$$
$$M_{\tau_{z}}(\mathbf{k}_{z}) = m + \tau_{z}\sqrt{t_{s}^{2} + t_{d}^{2} + 2t_{s}t_{d}\cos(k_{z}d)}$$

• Gap closes when

$$\cos(k_0 d) = \frac{m^2 - (t_s^2 + t_d^2)}{2t_s t_d}$$

• k_0 exists when

$$\underbrace{|t_s - t_d|}_{m_{c1}} \le m \le \underbrace{|t_s + t_d|}_{m_{c2}}$$

1. Anomalous QHE in Weyl SM

(Shift the BZ along z-axis by half)

One 2D layer for each k_z

Hall conductivity

 $\sigma_{H}^{2D}(k_{z}) = 0$ $\sigma_{H}^{2D}(k_{z}) = \frac{e^{2}}{h}$ Cut through Dirac string (the center of vortex)

Total Hall conductivity

$$\sigma_H^{3D} = \frac{1}{L_z} \sum_{k_Z} \sigma_H^{2D}(k_Z) = \frac{e^2}{h} \frac{\overline{k_0}}{2\pi}$$

Semi-quantized Hall conductivity

- 2 Weyl nodes are created at origin
- They are linked by a string of gauge singularity (Dirac string)

Phase diagram of Burkov-Balent model

Anomalous Hall effect in *ferromagnetic* Weyl SM

- Temperature dependence of the anomalous Hall conductivity at B=0
- Field dependence of the Hall conductivity

Below 100 K, σ_H is roughly constant, indicating that the AHE is not governed by scatterings.

2. Surface state and Fermi arc (Wan et al, PRB 2011)

Consider a semi-infinite WSM

$$m(x) < |t_s - t_d| \text{ for } x < 0, \text{ or } M_-(k_z) < 0 \text{ (NI)}$$

 $m(x) > |t_s - t_d| \text{ for } x > 0, \text{ or } M_-(k_z) > 0 \text{ (WSM)}$

$$\mathsf{H}_{k_z} = \mathsf{h}_0 + \underbrace{\left[m(x) - \sqrt{t_s^2 + t_d^2 + 2t_s t_d \cos(k_z d)}\right]}_{M_-^{k_z}(x)} \sigma_z$$

Re-quantized Hamiltonian for the middle 2 bands,

Surface state

$$\phi_s^{k_z}(x) = e^{-\frac{1}{v} \int_0^x dx' M_-^{k_z}(x)} \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Energy level of surface state

 $\varepsilon_s^{k_z}(k_y) = vk_y$

Chiral edge state

Weyl point and Fermi arc (3D view)

Fig from Kargarian et al, Sci Rep 2015

SS connects to bulk states at Weyl nodes

Haldane 1401.0529

Fermi arc in Transition metal monopnictide

0.5 mm

