(Dyakonov and Perel, JETP 1971; J.E. Hirsch, PRL 1999.)

Spin Hall effect: <u>extrinsic mechanism</u>
(Dyakonov and Perel, JETP 1971; J.E. Hirsch, PRL 1999.)
Due to SO interaction between electron and impurity Spin Hall effect: <u>extrinsic mechanism</u>

(Dyakonov and Perel, JETP 1971; J.E. Hirsch, PRL 1999

Due to SO interaction between electron and impure

• Skew scattering (Smit, Physica 1955) Due to SO interaction between electron and impurity

Kato et al, Science 2004 Local Kerr effect in strained n-type bulk InGaAs, 0.03% polarization

From quantum Hall effect to quantum spin Hall effect

Quantum spin Hall effect \sim two copies of QAHE

-
- no longer quantized. But the edge states remain robust.

Looking for natural band inversion

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides (TMD) Science 2014

Xiaofeng Qian, ^{1*} Junwei Liu, ^{2*} Liang Fu, ²⁺ Ju Li¹⁺

Figure 2 | Ground-state energy differences between monolayer phases of the six studied materials. The energy U is given per formula unit $MX₂$ for

Duerloo et al, Nat Comm 2014

Qian, Science 2014

Observation of the quantum spin monolayer crystal 1T'-WTe₂

Takashi Taniguchi,³ Robert J. Cava,² Pablo Jarillo-Herrero¹† Science 2018

- **in a**

science 2018

 "Plateau" exists only for

ballistic transport

 Nothing is really ballistic transport
- ³
• Science 2018
• "Plateau" exists only for
• Mothing is really
• quantized, except that
there are "2" edge quantized, except that there are "2" edge channels

The topology behind QSHI, aka 2D TI (With TRS, the Chern number is zero.)

Topological insulator

- A. Time-reversal symmetry
	- 1. Time-reversal-invariant momentum
	- 2. Spin-orbit interaction
- B. Z_2 topological number
	- 1. Chern number
	- 2. Winding number
	- 3. Z_2 topological number again
	- 4. Lattice with inversion symmetry
- C. Helical edge state

Time-reversal operator (spin ½)

$$
\Theta = -i\sigma_y K = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) K
$$

$$
\begin{array}{rcl}\n\text{or} & = e^{-is_y \pi/\hbar} K \\
\hline\n\text{Rotates spin-up} & \text{for} \\
\text{to spin-down} & \text{or} \\
\end{array}
$$

In general, for half-integer spin,

$$
\Theta = e^{-iJ_y\pi/\hbar}K
$$

for integer spin, $\Theta^2 = +1$

In general, for half-integer spin,
\n
$$
\Theta = e^{-iJ_y \pi/\hbar} K
$$
\n
$$
\Theta^2 = -1
$$
\nfor integer spin, $\Theta^2 = +1$
\n• Spinor Bloch state under TR
\n
$$
\begin{pmatrix} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{pmatrix} \xrightarrow{TR} \Theta \begin{pmatrix} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{pmatrix} = \begin{pmatrix} -\varphi_{\mathbf{k}\downarrow}^* \\ +\varphi_{\mathbf{k}\uparrow}^* \end{pmatrix}
$$

Kramer degeneracy

For a system with TRS and *half-integer* spin, if ψ is an energy eigenstate, then $\Theta \psi$ is also an energy eigenstate. Furthermore, these two states are degenerate and orthogonal to each other.

Pf. Since $H\Theta = \Theta H$, so if ψ is an eigenstate with energy ε , $H\psi = \varepsilon\psi$, then

$$
H\Theta\psi = \Theta H\psi = \varepsilon\Theta\psi.
$$
 (1.58)

That is, $\Theta \psi$ is also an eigenstate with energy ε . Furthermore, using the identity $\langle \beta | \alpha \rangle = \langle \tilde{\alpha} | \beta \rangle$, one has

$$
\langle \psi | \Theta \psi \rangle = \langle \Theta (\Theta \psi) | \Theta \psi \rangle \tag{1.59}
$$

$$
= -\langle \psi | \Theta \psi \rangle, \tag{1.60}
$$

in which $\Theta^2 = -1$ has been used to get the second equation. Therefore, $\langle \psi | \Theta \psi \rangle = 0$. QED.

Spin-orbit coupling (SOC)

$$
H_{so} = \lambda_{so} \sigma \times \mathbf{p} \cdot \nabla V_L.
$$

If weak, then $\psi_{n\mathbf{k}\pm} \simeq \psi_{n\mathbf{k}\uparrow/\downarrow}$

Spinor Bloch state with TRS

$$
\Theta = i\sigma_y K, \ \Theta^2 = -1
$$

$$
\begin{cases} \Theta \psi_{n\mathbf{k}+} = -\psi_{n-\mathbf{k}-} \\ \Theta \psi_{n\mathbf{k}-} = +\psi_{n-\mathbf{k}+} \end{cases}
$$

If the Bloch states are topologically non-trivial, then one needs to write

$$
\begin{cases}\n\Theta \psi_{n\mathbf{k}+} = -e^{i\chi_{n-k}} \psi_{n-\mathbf{k}-}, \\
\Theta \psi_{n\mathbf{k}-} = +e^{i\chi_{nk}} \psi_{n-\mathbf{k}+}.\n\end{cases} (1.6)
$$

It's possible *not* to have such a phase (in the so-called TR-smooth gauge). However, this would result in points of gauge singularity within the BZ.

[Spin-Orbit Coupling included]

There are several ways to characterize the topology of a QSHI Here we mention three: 1. There are several ways to characterize the topology of a QSH
1. Chern number of effective BZ (Moore and Balent)
1. Chern number of effective BZ (Moore and Balent)
2. Winding number of gauge transformation (Fu and Kane)
 There are several ways to characterize the topology of a QSHI
2. Chern number of effective BZ (Moore and Balent)
2. Winding number of gauge transformation (Fu and Kane)
3. Cumultaive parities at TRIM
(see, e.g., Favata and There are several ways to characterize the topology of a QSHI
Here we mention three:
1. Chern number of effective BZ (Moore and Balent)
2. Winding number of gauge transformation (Fu and Kane)
3. Cumultaive parities at TRIM ere are several ways to characterize the topology of a QSI

e we mention three:

Chern number of effective BZ (Moore and Balent)

Winding number of gauge transformation (Fu and Kane)

Cumultaive parities at TRIM

(see, e.g

-
-
-

Topology in 2D TI Moore and Balent, PRB 07 $\overline{\mathbf{1}}$

Consider lattice fermion with time reversal symmetry (TRS)

A time-reversal invariant plane

- \overline{BZ} \overline{BZ} $\overline{C_1} = 0$ $\overline{C_2} = 0$
- Moore and Balent, PRB 07

h time reversal symmetry (TRS)

 Without B field, Chern number C₁= 0

 Bloch states at *k*, -*k* are not independent, Moore and Balent, PRB 07

h time reversal symmetry (TRS)

• Without B field, Chern number C₁= 0

• Bloch states at *k*, -*k* are not independent,

independent states live in EBZ. independent states live in EBZ. • Without B field, Chern number C₁= 0
• Bloch states at *k*, -*k* are not independent,
independent states live in EBZ.
• EBZ is a cylinder, not a closed torus.
∴ No obvious quantization.
→ Solution: add caps to close th Moore and Balent, PRB 07
 h time reversal symmetry (TRS)

• Without B field, Chern number C₁= 0

• Bloch states at *k*, -*k* are not independent,

independent states live in EBZ.

• EBZ is a cylinder, not a closed tor
	-
	- ∴ No obvious quantization.
	- \rightarrow Solution: add caps to close the EBZ
	- \cdot C₁ of the closed surface may depend on caps
	- \cdot C₁ mod 2 is independent of caps, thus is an intrinsic property of the EBZ
	- 2 types of insulator, the "0-type", and the "1-type" The topology is protected by TRS

Topology in 2D TI (Fu and Kane 2006) $\overline{2}$

Consider a Kramer pair, adopt TR-smooth gauge,

$$
\begin{cases}\n\Theta \psi_{n\mathbf{k}+} = -\psi_{n-\mathbf{k}-} \\
\Theta \psi_{n\mathbf{k}-} = +\psi_{n-\mathbf{k}+}\n\end{cases}
$$

 \rightarrow There are singularities inside the BZ

(Non-Abelian) Berry connection

$$
\mathbf{A}^{n}_{\alpha\beta}(\mathbf{k}) = i \langle u_{n\mathbf{k}\alpha} | \frac{\partial}{\partial \mathbf{k}} | u_{n\mathbf{k}\beta} \rangle
$$

2 patches of gauge

Gauge transformation

$$
|u_{\mathbf{k}\alpha}\rangle_B = U_{\alpha\beta}|u_{\mathbf{k}\beta}\rangle_A
$$

22
$$
U(2) \text{ matrix}
$$

$$
\implies A_{\ell}^{B} = U^{\dagger} A_{\ell}^{A} U + i U^{\dagger} \frac{\partial}{\partial k_{\ell}} U
$$

Winding number of the phase of gauge-transition

$$
w = \frac{1}{2\pi i} \oint_{\partial A} d\mathbf{k} \cdot \text{tr}\left(U^{\dagger} \frac{\partial}{\partial \mathbf{k}}U\right)
$$

$$
w = \frac{1}{2\pi} \oint_{\partial A} d\mathbf{k} \cdot (\mathbf{A}^A - \mathbf{A}^B)
$$

$$
\oint_{\partial A} d\mathbf{k} \cdot \mathbf{A}^A = \int_A d^2k \ F_z^A
$$

The same cannot be done for $|u_{\mathbf{k}\alpha}^{B}\rangle$, since it is *not* smoothly defined in A . Instead, we write

$$
\oint_{\partial A} d\mathbf{k} \cdot \mathbf{A}^{B} = \oint_{\partial E B Z} d\mathbf{k} \cdot \mathbf{A}^{B} - \oint_{\partial B} d\mathbf{k} \cdot \mathbf{A}^{B}
$$
\n
$$
= \oint_{\partial E B Z} d\mathbf{k} \cdot \mathbf{A}^{B} - \int_{B} d^{2}k F_{z}^{B}
$$

$$
w = \frac{1}{2\pi} \left(\int_{EBZ} d^2k \ F_z - \oint_{\partial EBZ} d\mathbf{k} \cdot \mathbf{A} \right)
$$

mod-2 gauge invariant

 \sim Gauss-Bonnet theorem

$$
\chi = \frac{1}{2\pi} \Bigl(\int_M da \ G + \int_{\partial M} ds \ k_g \Bigr)
$$

If there is inversion symm, (Fu and Kane 20

then Bloch state at TRIM Γ_i has a definite p

• Parity eigenvalue $\Pi \psi_{n\Lambda_i \alpha}(\mathbf{r}) = \zeta_{n\Lambda_i} \psi_{\Lambda_i \alpha}$
 $\zeta_{n\Lambda_i} = 1 \text{ or } -1$ If there is inversion symm, (Fu and Kane 200

then Bloch state at TRIM Γ_i has a definite paralleler

• Parity eigenvalue $\Pi \psi_{n\Lambda_i \alpha}(\mathbf{r}) = \zeta_{n\Lambda_i} \psi_i$
 $\zeta_{n\Lambda_i} = 1 \text{ or } -1$

• Cumulative parity at Γ_i
 $\delta_i = \prod_{n$ If there is inversion symm, \odot (Fu and Kane 2006)

then Bloch state at TRIM Γ_i has a definite parity

$$
\zeta_{n\Lambda_i} = 1 \text{ or } -1
$$

same for this pair

If there is inversion symm, (Fu and Kane 2006)
\nthen Bloch state at TRIM
$$
\Gamma_i
$$
 has a definite parity
\n• Parity eigenvalue
\n
$$
\Pi \psi_{n\Lambda_i \alpha}(\mathbf{r}) = \zeta_{n\Lambda_i} \psi_{n\Lambda_i \alpha}(\mathbf{r})
$$
\n
$$
\zeta_{n\Lambda_i} = 1 \text{ or } -1
$$
\n• Cumulative parity at Γ_i
\n
$$
\delta_i = \prod_{\substack{\text{defilled}\\ \text{topological}}} \zeta_n(\Lambda_i)
$$
\n
$$
\zeta_i \in \text{filled}
$$
\n• Z₂
\n
$$
(-1)^{\nu} \equiv \delta_i \delta_2 \delta_3 \delta_4 = +1 \quad \text{(normal phase)}
$$
\n• Z₁
\n
$$
(\lambda_i) \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \
$$

 $\sum_{n=1}^{\infty}$ parity change, and topological transition

24

-
-

3D Topological insulator

- A. Fermi circle of the surface state
- Weak topological indices **B.**
- C. Bulk-edge correspondence
- D. Topological crystalline insulator and beyond

Surface Brillouin zone

3 TI indices

Momentum space

Each time-reversal invariant plane has a Z_2 index

Six Z_2 indices: $(x_0, y_0, z_0, x_*, y_*, z_*)$ $)$ $(-1)^{\nu} \equiv \delta_1 \delta_2 \delta_3 \delta_4 = z_0$ ' $(-1)^{\nu} \equiv \delta_5 \delta_6 \delta_7 \delta_8 = z_+$ etc

However,

$$
x_0 x_+ = y_0 y_+ = z_0 z_+ = \delta_1 \delta_2 \delta_3 \delta_4 \delta_5 \delta_6 \delta_7 \delta_8
$$

2 independent relations

So only 4 independent Z_2 numbers

 $\delta_i \equiv \prod \xi_{2n}(\Gamma_i)$ n filled

Band structure of Sb (Liu and Allen PRB95)

Spin-momentum locking of the Dirac cone at TRIM

Spin-resolved ARPES Band inversion, parity change, emergence of SS, and spin-momentum locking

S.Y. Xu et al Science 2011

Weak TI index and defect

Two types of dislocation:
• Edge dislocation
• Screw dislocation Two types of dislocation:
• Edge dislocation
• Two types of dislocation:

• Screw dislocation
Electronic state along 1D defect
• robust against disorder
• chiral quantum wire • Screw dislocation
Electronic state along 1D defect
• robust against disorder
• chiral quantum wire Electronic state along 1D defect

-
-

Topological insulators are protected by time-reversal symmetry. Similar topology can also be protected by crystalline symmetries. They are called topological crystalline insulator (TCI)

Finey are called topological crystalline insulator (TCI)

FHYSICAL REVIEW LETTERS

Topological Crystalline Insulators

Ling Fu

(Received 5 October 2010; revised manuscript received 31 December 2010; pu

Again they would h For California: The quadratic curve in the dispersion near a DP can be quadratic curve in the dispersion near a DP can be quadratic curve in the dispersion near a DP can be quadratic curve in the dispersion near a DP can b FIRITSICAL REVIEW LETTERS

Topological Crystalline Insulators

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 5 October 2010; revised manuscript received 31 December 2010; publish

Again they would have robust surface states, but

-
-
-

nature **Topological quantum chemistry**

Barry Bradlyn¹*, L. Elcoro²*, Jennifer Cano¹*, M. G. Vergniory^{3,4,5}*, Zhijun Wang⁶*, C. Felser⁷, M. I. Aroyo² & B. Andrei Bernevig^{3,6,8,9}

2017

Higher order TI (protected by crystal symm)

41 Fig from Kim et al, in Light: Science & Applications (2020)