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Basics

e Lattice Hamiltonian

p2

H=—+Vi(r), with V(r + R) =V (r)

2m

» Lattice translation operator
TryY(r) =9¢(r + R)
TrH(r)Y(r) = H(r)Tr¢(r)

=) ¢ Simultaneous eigenstates
(Bloch states)

HvY = e, |cgl=1

TR Y = CcrvY,

=
=

write

then

TRTr' =Tr'Tr = TrR+wr’

CRCR’ = CR’CR = CR+R’
cp = kR

Hex = etek,
TRY:x = C’k'R'lﬁ’gk-

'l,{i?sk([‘) = Cik.r'l[-gk(l')

Uek(r + R) = ugi(r)

Cell-periodic
function

The Bloch wave differs from the plane
wave of free electrons only by a periodic
modulation.

» u,(r) contains, in one unit cell, all info of ¥ (1)



Schroedinger eq. for ug(r)
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Solve diff eq with with PBC
Uz (r + R) = ugi(r)
=) Discrete energy levels

ﬁk(r)unk = EnkUnk

Band index n,
Bloch momentum k

'l*’"“nk(r F R) — Gik-RLfﬁ’nk(r)

C’C"R =

g 'l.i:-"nk+G(r ¥ R) — eik.ank+G (1‘)

Since the two Bloch states v, and ¥, satisfy the
same Schrodinger equation (with €, = €,x+c) and the
same boundary condition (Eqs. (1.16)and (1.17)), they
can differ (for non-degenerate states) at most by a phase
factor o(k).

» Periodic gauge (choose f(k)=0)

wnk-i-G = Wnk

Not applicable to topological state, e.g., quantum

Hall state (this is called topological obstruction)



Berry curvature in Bloch state

» Cell-periodic Bloch state * Space inversion
Hy(r)tnk (r) = encttnk(r) Unic(T) = Up—1c(—T) = Upi(T),
, 0
E[k(r) — e—ik-rH(r)eik-r An(k) = Z(Un_klaklun_k> :—A ( k)
1 F,(k) = Vg x|[—-A,(-k)|=F,(—k
2m
* Berry connection « Time reversal
An(k) . Z(“nk' ok |unk> uﬂ»k(r) — u;—k(r) = u’nk(r)!
« Berry curvature S Ank) = e g un )
. 0
Fn(k) — Vk XAn(k) — _?'< Up— k‘ |un k>_ n(_k)
(9’U,nk 8unk

=

e | x| . ) Fylk) = kaAn( k)_—Fn( k)



Under one-band approximation
(same as the adiabatic approximation)

Velocity of electron in an electric field,

va(k) = 220 4 g F (k)

h Ok h aka anomalous velocity

BC-induced velocity,

Pf. Choose time-dependent gauge
E=-0A/0t, A =—-Et

(p + hko - 8Et)2
2m

) ﬁEO = + Vi(r) = ﬁk(t)
k(t) — kg — eEt/h
To the O-th order, just replace  |u,x) with |w())

and ﬁk(t)|unk(t)) — €nk(t)|unk(t)>



To the first-order (see Prob. 1),

| ) |’U, —’Lh Z |un’k un’k|3t|unk>
nk

al=En) Enk — €n’k
va(k) = (! |¢ 2
1 P+hk (1
= (u fﬂl )
= ) ey
Hnk hok
OH
Va(k) = (unl 7o fun)
£ ((unk Ok [t ic) (Unac| L2k _Cc)
Enk — En’k -
n'(#n)

v, (k)
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* Current density Js = —iZf(gnk)vm(k)

n k
Hall conductivit 621217 (k)
. all condauctvity Ogy — — = 792 nz
(T=0) T
o9 N
e 1
= —— — d°kF,.(k
i 22 (o 4
For a filled band n, the integral over F, is an integer (proof later)
1
- First Chern number Cfn) = — d°kF,.(k) € Z
2T BZ

As a result, the Hall conductivity is quantized.

E.g., Quantum Hall effect, Chern insulator (anomalous Hall effect ch 5,

Haldance model ch 6) ~ lattice version of QHE



Hall effect in 2-dimensional electron gas (2DEG)

GaAs/AlGaAs heterojunction 2DEG Conduction electrons
are trapped here

L CB edge

//_\ n -GaAs

doped Al,Ga;_,As\—10-100nm
e e O S DEG
undoped GaAs 1-4 pm

VB edge “%
semi - g\é-‘.xl;lting AlGaAs

« Atlow T, the dynamics along z-direction
is frozen in the ground state > 2DEG

—

» Apply a strong B field, then there are
Landau levels (LLs)
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[Integer] Quantum Hall effect (von Kiitzing, 1980)
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Hall resistivity and Hall conductivity at plateaus
b = 1n hle2 = 25.81280745 k-ohm
H n e’ accurate to 109, a defined value after 1990
. 82 fine structure constant, o = e? [Ameghe.
Oy =n— [Note: After 2019, the values of e, h, and ¢ are defined,

and only ¢ is uncertain.|
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Brief explanation of the QHE:

Landau levels Increasing B
(LLs) @ ©)

hwc|

Density of States

Energy

Cyclotron energy Ao, = 1.16H x 10" 8¢V x m*
134H x 1074k ™
(H in Gauss) (for GaAs, m*=0.067m)

|

 Landau levels have non-zero Chern numbers
« Hall conductance is quantized whenever the

Fermi energy lies inside an energy gap



D(E) —»

Disorders and Hall plateaus

LLs are broadened due to disorders

,-"”

|
rl. extended ~.-',
1 states ~_ /| I

Aoki, CMST 2011
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Filling factor

(there is no plateaus in a clean 2DEG)
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To observe IQHE, we need

Two-dimensional electron system

Breaking time-reversal symmetry

Filled energy bands (insulator) with non-zero Chern numbers
« Landau levels (IQHE)
« Bands with magnetization (QAHE) < next chap

(Low temp, high B field are usually, but not necessarily, required)

Examples of Macroscopic Quantum Phenomena

Superconductivity (Onnes, 1911)
Superfluidity (Kapitsa, 1937)
Quantum Hall effect (von Klitzing, 1980) < room temperature possible

Bose-Einstein condensation (Cornell and Wieman, 1995)



Quantum Hall Effect in 2D systems

Need to break time-reversal symmetry

» Si MOSFET (von Klitzing et al, 1980)

» (GaAs heterojunction (Stormer, 1982)

» Graphene (Novoselov, Science 2007)

» Polar oxide heterostructures (Tsukazaki et al, Science 2007)
[Transition Metalg Twisted bilayer graphene (Lee et al, PRL 2011)

DIohaloogenide = MD: WSe, (Mowva et al, PRL 2017)
s . : e ovva et al,
L B EY) 5

* |InSe (Bandurin et al, Nat Nanotech 2017)
* Tellurene (Qiu et al, Nat Nanotech 2020)
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Before proving that C, is an integer, let’s review

the Berry curvature of a spin-1/2 electron:

0
A - '(5()S 5
%, +) ( e'? sin & ) ’

2

2
(phase ¢ is ambiguous at 6=n)

1 1—cosf
> Ag(B) = ?OB - € div at 0=n
n, ) = eT?|n, +)
1 14 cos@ .
= AL(B)=F5p—5 0 ¢  divate=o

S(B)= AVB)+ 2
Ai(B)=AY(B) % o5
The presence of the Dirac string is an example

18 of the topological obstruction.

. —e" *gin 2
n,—) = -
) e B .
cos 2

Dirac string

Dirac string
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In Fig. 2(a), we see a loop C7 near the north pole, and
a loop C5 near the south pole. The area inside C7 1s
designated as Sp; the area outside is S;. Similarly the
area inside Cy is Ss. outside is So. It is not difficult to
see that,
~ 27 =)

f (lf-AN :/ d2a-Fi 75 an'Fi. (1‘36)
Co S'g So

Vorticity of the

singularity

The LHS approaches 27 as C> shrinks to zero: while the
last integral approaches 0. The inequalities arise because
the Stokes theorem fails if A is singular in the domain of
surface integration.
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We can use two patches of gauge to avoid the singularity

> (IQa-Fi

m) Total Berry flux is quantized.

The same analysis applies to the magnetic monopole in real space.
So the flux of a magnetic monopole (or the monopole charge)

needs be quantized.
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Now, back to the quantum Hall system What is spe-

cial about the QH Bloch state is that there exist nodal
points in the BZ. where u,y, = 0. Similar to the south
pole in Fig. 2(a), the phase is ambiguous at k;, and the
Berry connection A, (k) is singular there (see Fig. 3(a)).

BZ

Gauge |

Assume there is only one singular point, then the line in-
tegral of A, (k) around a small loop C' enclosing k; (and
divided by 27) equals the first Chern number (similar
to the loop Cs in Fig. 2(a)). It is sometimes called the
vorticity of the singular point.
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C zzL _" d*k F (k) isaninteger
7Z-BZ

Single-valued

: IT _ _iXxnk, I Gauge
Pf Uk = € Unk  transformation

Iy n(k

= All(l) = AL(K) - P2

Using two patches of gauge to avoid singularity

d’k - | R
BZ

=

BZ _ .
=== Singularity
.. ¥ ... Vofgaugel
| Singularity | A
: of gaugell 1 ~
: fc
| Gauge |l
--------- ' Gaugelll

E / d’k -V fol+/ d’k -V x AM
left Jright

= ?gdk- (AL — AL
JC

0 i
= f dk - __\
C ok

= 27 X Integer.




