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Basics of Topology

• Winding number

• Euler characteristics

• Intrinsic and extrinsic curvatures

• Parallel transport

• Gauss-Bonnet theorem

• Hopf-Poincare theorem
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Topology:  

• Euler characteristics 
(number of holes)

Examples of 
Topological invariant:

the property of an object that is invariant under 

continuous deformation

0 1 2

• winding number

• Chern number . . . 

If a physics system has topological property, then it is stable 

against small change of physical condition.
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Topology in vector field (Fluid flow, EM field …)

Patterns of flow near a “zero” (a nodal point) can be

related to the winding number

Fig from Belyaev’s article
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Consider a map from a closed path to the circle depicted 

by the direction of vectors

Example: 

Source, 

vortex, drain
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Winding number
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They all have w=1 and are 

continuously deformable to 

each other (in 2D).
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By stereographic projection, a plane 

can be identified with (wrapped up to) 

a sphere

F
ig fro

m
 K

a
rin

 a
n

d
 M

a
tth

ia
s S

itte
, JA

P
 2

0
1

4

Now the vectors on a plane can point out of the plane

Such a localized texture of 
vectors is called a skyrmion

Hypothetical structure 
of nucleons proposed 

by Skyrme, 1962

史科子

Topology in vector field
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Winding number 

(details later)
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w

A map from this sphere to the direction of vectors
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正多面體

Euler characteristics

Platonic solids, discovered by F. Maurolico (1537)
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Beyond regular polyhedron, Euler (1758)

2 4 4 2V E F        4 8 4 0V E F       

sphere torus

• Divide a surface into patches.

• This number  is independent of the ways of division, so 

it’s a property of the surface itself. 

• Furthermore, it does not change under continuous 

deformation, so it’s a topological invariant.
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Euler characteristic of a surface

χ =－2χ = 0χ = 2 χ =－4

k=0, 1, 2, 3, … =      , , , , …

# of holes

For a surface (D=2), 0 1 2( )M     

k-單體
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Curvature of a surface

• How do we quantify the 
curvature of a surface?

1
k

r


• First, how do we quantfy the 
curvature of a line (at point p)?

主曲率

Osculating circle 
of point p

p

密接圓

Curvature k at p:

One can fit the surface 
near p by a quadratic 
surface (ellipsoid, 
paraboloid, hyperboloid)
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Def 1

Two kinds of curvature

• Mean curvature 

• Gaussian curvature 

Extrinsic外在

Intrinsic內在

H≠0

G≠0

H≠0

G=0

1 2
1 2

1 1
H k k

r r
   

1 2
1 2

1
G k k

r r
 

• Without stretching/squeezing a surface (i.e., the shortest distance 

between any 2 points remain the same), its G will not change.

H≠0

G=0

平均曲率
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Positive and negative
Gaussian curvature

G>0

G=0

G<0

wordpress.discretization.de/geometryprocessingandapplicationsws19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/

A torus 環面

1 2, 0k k 

1 20, 0k k 

1 20, 0k k 

Saddle point
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• You cannot change Gaussian curvature without 
stretching/squeezing the surface. 

• That is, without stretching your pizza, its G must remain 
zero, and one of the k1,2 must be zero.

The Remarkable Way We Eat Pizza -
Youtube: Numberphile
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• Parallel transport a vector v along a geodesic curve 

That is, keep the angles between v and the tangent vectors of the curve fixed.

Theorema Egregium (Gauss, 1827)

i.e. the most remarkable theorem

Gaussian curvature can be determined entirely by measuring 

angles and distances on a surface.

v

• First, how do we compare two vectors at different 
locations on a curved surface?
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• Parallel transport a vector around a loop of geodesics.

• After circling a loop on a curved surface, v would not come 

back to its initial state, but is rotates by an angle a

0
lim
A

AG
A

a


Gaussian curvature at p

can be defined as
Def 2

• This kind of behavior is called anholonomy (incomplete), and 

the angle a is called an anholonomy angle (or defect angle)

p

虧角

Intrinsic definition of Gaussian curvature
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Anholonomy angle and curvature of a sphere

A general 
spherical triangle, 

20

1
lim A

A
G

rA

a


 

A

αA

A

Parallel 
transport

r

Imagine you’re carrying a pendulum 
walking slowly around the triangle, then

The gravity acts downward, so it 
cannot affect the orientation of 
the pendulum. Hence, only the 
angles between two segments 
contribute to the anholonomy.

(From Satija’s note)

area
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G>0

G=0

G<0

0Aa 

0Aa 

0Aa 

Anholonomy angle and curvature 
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aA = 0 ?

PT condition along a general curve:
The earlier definition of PT cannot be right 
(e.g., transporting a vector along a curve 
on a flat surface).

Small circleGreat circle

New definition:
v does not twist around the local vertical 
axis (normal vector n) as we move along 
a curve C.
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v does not twist around the local 
vertical axis (normal vector n) as we 
move along a curve C.

Parallel transport around a small circle on a sphere

What is the anholonomy angle? 

p.234, Intro Diff geometry and Riemannian geometry, by Kreyszig
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Gauss map and Gaussian curvature

Gauss map
n: M  S2

From normal 
vector to a sphere

0
lim
A

AG
S

A


(Ratio between two areas)

Def 3

Unit sphere

Unit 
normal 
vector 
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Total curvature of a closed surface is 4p

(=solid angle of the unit sphere), no matter how 

the surface is deformed

Total curvature is a topological invariant

Total curvature of a closed surface

4a

M M

dS
da G da

da
p  
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1
( )

2 M
daG M

p


Gauss-Bonnet theorem (for 2D surface) 

– connecting local curvature with global topology

• Open surface 

1
( , )

2 gM M
da G d M M 

p 

       

1 

• Closed surface 

The most beautiful theorem 
in differential topology

p.211, Intro Diff geometry and Riemannian geometry, by Kreyszig

https://math.stackexchange.com/questions/2270687/variation-
on-gauss-bonnet-theorem-disjoint-discs

p.212, Intro Diff geometry and Riemannian geometry, by Kreyszig

Q: Verify that the Euler characteristics of a disk is 1.

How would  change if you punch a hole in the disk?
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Geometry Quantum state

• PT condition

• anholonomy

• curvature

• Topo number

• .

• Anholonomy angle

• Gaussian curvature

• Euler characteristic

• .

• Berry phase

• Berry curvature

• Chern number

Anholonomy in geometry and quantum state

1

2 M
C da

p
 

1

2 S
da G

p
 

• Chern number refers to the topological number 
of fiber bundle space

陳省身
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Winding number again

Index of a point defect in a vector field 

Fig from Jonas Kibelbek
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Hopf-Poincare theorem
- Connecting index of point defect with topology

Hairy ball theorem

( ) ( )i
i

ind v M

( ) 2i
i

ind v 
On a sphere

Winding 
number
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Youtube course: Topology & Geometry, by Tadashi Tokieda

A “proof” of Hopf-Poincare theorem

時枝正

Put a source on a vertex, a saddle point on an edge, 
and a sink on a face

source

saddle 
point

sink
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Vector field on a torus

2( ) ( ) 0i
i

ind v T  F
ig fro
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Berry connection A(k) as a vector field in BZ

Brillouin zone as a torus (1D, 2D, 3D)Application:
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Nielsen-Ninomiya theorem: 

1D

“ 2D ” 3D

Massless Weyl fermions appear in pairs 
(no isolated monopole)

Chirality not 
defined in 2D

二宮正夫

(non-interacting) massless lattice fermions must appear in pairs

Massless fermions 
with opposite slopes


