Basics of Topology

* Winding number

» Euler characteristics

* Intrinsic and extrinsic curvatures
» Parallel transport

« Gauss-Bonnet theorem

» Hopf-Poincare theorem




Topology: the property of an object that is invariant under

continuous deformation

Examples of
Topological invariant:
* winding number "
0 1 2
« Euler characteristics )
(number of holes) ﬁ

« Chern number

If a physics system has topological property, then it is stable

against small change of physical condition.



Topology in vector field (Fluid flow, EM field ...)

Patterns of flow near a “zero” (a nodal point) can be

related to the winding number

center

&

saddle

Fig from Belyaev’s article

stable node



Consider a map from a closed path to the circle depicted

by the direction of vectors ' :S' — S’

To
Winding number
w=0
b
f

Ly
=1
Example: ) They all have w=1 and are
Source \\ ‘{/ continuously deformable to
' —r a %= | each other (in 2D).

vortex, drain PRt ( )
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Topology in vector field

Now the vectors on a plane can point out of the plane

;’ #l.¢ Q’ Such a localized texture of

£ \ r {/?f \’ vectors is called a skyrmion 5 F}+

"f \ ’ Hypothetical structure
/ f \\\\ of nucleons proposed

by Skyrme, 1962

By stereographic projection, a plane
can be identified with (wrapped up to)

a sphere
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A map from this sphere to the direction of vectors  f :S° — S°

Winding number 1 om Om
m - dA

X
ox Oy

: W=—
(details later) A d4
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Euler characteristics
Platonic solids, discovered by F. Maurolico (1537)  IEZ[HifE

Vertices | Edges Faces Euler characteristic:

Name Image
Vv E F V=E+F
Tetrahedron 4 (= 4 2
Hexahedron or cube ‘ 8 12 6 2
Qctahedron ‘ 6 12 8 2
Dodecahedron ‘ 20 30 12 2
Icosahedron . 12 30 20 2



Beyond regular polyhedron, Euler (1758)

sphere torus

y=V-E+F=2-4+4=2 x=V-E+F=4-8+4=0

» Divide a surface into patches.

* This number y is independent of the ways of division, so
it's a property of the surface itself.

* Furthermore, it does not change under continuous

deformation, so it's a topological invariant.
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Euler characteristic of a surface (M) =2(1 — g)

~ P

X=2 x=0 X=—2 x=-4

# of holes

In general, for a surface M with dimension D, we can
divide it into a patchwork of cells, and define

D
= (=1)*Br. (B8)
k=0
where ;. 1s the number of k-simplexes. k-Ef§

o128 e — . AL

For a surface (D=2), y(M)=pS,-B + 5,
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Curvature of a surface

First, how do we quantfy the

curvature of a line (at point p)? P
Curvature k at p:
N T 1
(A k=—
Osculating circle r
of point p

How do we quantify the
curvature of a surface?

One can fit the surface
near p by a quadratic
surface (ellipsoid,
paraboloid, hyperboloid)

A quadratic surface must have two principal directions
with maximum and minimum radii r7,7. They corre-

spond to two principle curvatures k; = 1/r1,ky =
1/r5 (up to a sign). F
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Two kinds of curvature

 Mean curvature H=k+k, = l+i Extrinsic ¥ME
T on
: .
Gaussian curvature G=kk, = L intrinsic 57z o Def 13
K, q

« Without stretching/squeezing a surface (i.e., the shortest distance

between any 2 points remain the same), its G will not change.

N (1] i TJ H#0

e |

Figure 3.6 Bending a sheet of paper changes its extrinsic— G=O
but not its intrinsic—geometry.
H#0
H#0
G=0
G#0
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Positive and negative
Gaussian curvature

TEUEL PEVTETUE LEaBK

k,k,>0
G>0

k,>0,k, =0

wordpress.discretization.de/geometryprocessingandapplicationsws19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/
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The Remarkable Way We Eat Pizza -
Youtube: Numberphile

* You cannot change Gaussian curvature without
stretching/squeezing the surface.

« That is, without stretching your pizza, its G must remain
zero, and one of the k, , must be zero.
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Theorema Egregium (Gauss, 1827)

i.e. the most remarkable theorem

- .

Gaussian curvature can be determined entirely by measuring

angles and distances on a surface.

First, how do we compare two vectors at different
locations on a curved surface?

Parallel transport a vector v along a geodesic curve

That is, keep the angles between v and the tangent vectors of the curve fixed.




Intrinsic definition of Gaussian curvature
» Parallel transport a vector around a loop of geodesics.

» After circling a loop on a curved surface, v would not come

back to its initial state, but is rotates by an angle o

» This kind of behavior is called anholonomy (incomplete), and

the angle a is called an anholonomy angle (or defect angle) &5

Gaussian curvature atp = _ 10 % o Déf 2

can be defined as A= Al

17
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Anholonomy angle and curvature of a sphere

The gravity acts downward, so it
cannot affect the orientation of
the pendulum. Hence, only the
angles between two segments
contribute to the anholonomy.

(From Satija’s note)

Girard theorem (1626)
area A=ri(a+f+y—m)

Imagine you're carrying a pendulum
walking slowly around the triangle, then

a,=a+p+y—m

= G=lim%-L1

A—0 A 7
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Anholonomy angle and curvature




Great circle Small circle

N

Qap = a,=07?

o

PT condition along a general curve:

The earlier definition of PT cannot be right
(e.g., transporting a vector along a curve
on a flat surface).

New definition:

v does not twist around the local vertical
axis (normal vector n) as we move along
a curve C.
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Parallel transport around a small circle on a sphere

v does not twist around the local
vertical axis (normal vector n) as we
move along a curve C.

What is the anholonomy angle?

p.234, Intro Diff geometry and Riemannian geometry, by Kreyszig

21
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Gauss map and Gaussian curvature

S T~ Unit sphere
Gauss map M
n:M-> 32 7 Unit ' P §2
/ Unit >
From normal normal

vector to a sphere  / vector

2
N, S
G=lim—=
A-0 4
(Ratio between two areas)
(a)
o Def 3

=a

(b)
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Total curvature of a closed surface

S

Total curvature of a closed surface is 4r

(=solid angle of the unit sphere), no matter how

the surface is deformed

d

jMdanjMdg ;{{ =4rx

Total curvature is a topological invariant




28

Gauss-Bonnet theorem (for 2D surface)

— connecting local curvature with global topology

 Closed surface

i da G = Z( M) The most beautiful theorem
VM in differential topology

« Open surface o o>
1 W
ZUM daG+| df/cg} = (M ,0M)

p.211, Intro Diff geometry and Riemannian geometry, by Kreyszig

Q: Verify that the Euler characteristics of a disk is 1.

How would y change if you punch a hole in the disk?

https://math.stackexchange.com/questions/2270687/variation-
on-gauss-bonnet-theorem-disjoint-discs

p.212, Intro Diff geometry and Riemannian geometry, by Kreyszig



Anholonomy in geometry and quantum state

Geometry Quantum state
i ot mw Vo S e o
« PT condition . ~.~f1’/"" *H‘"'“"--::;ﬁ . -1,<'1|*:’.1|1“:'w> = ()
» anholonomy * Anholonomy angle » Berry phase
e curvature « (Gaussian curvature < Berry curvature

Euler characteristic Chern number

| 1
Z:E SdCZG C:EJ.MCZCIQ

Topo number

« Chern number refers to the topological number
of fiber bundle space

29




Winding number again

Index of a point defect in a vector field

34

Fig from Jonas Kibelbek



35

Hopf-Poincare theorem
- Connecting index of point defect with topology

. Winding
Zmd("i) = (M) number

On a sphere

A bull wity SHFf, Shaiglt A stort ot combing e
poveupine - lke g uills ball 50 fat the quills
amanating out frm lie. flat agawist the lo|
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A “proof” of Hopf-Poincare theorem

Youtube course: Topology & Geometry, by Tadashi Tokieda

A 1
Put a source on a vertex, a saddle point on an edge,
and a sink on a face
sink
saddle
source Point

Y ind(vi) = (+1)Bo + (=1)B1 + (+1) ;

p P

| — x(M) X(M) =) (-1)*ps

k=0
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Vector field on a torus

> ind(v) = 2(T*) =0

Application: Brillouin zone as a torus (1D, 2D, 3D)

ky

n/a

> L]
A A /
Z

/ 7
-n/a >

o
»

Berry connection A(k) as a vector field in BZ

Jpd'zalL1L 10z L /Hpd/Bio Aixae woly B4



Nielsen-Ninomiya theorem: —EIEX

(non-interacting) massless lattice fermions must appear in pairs

(a) (b},
1D E(k) E(k)
E 1 E /\pj/\ .
Massless fermion
. with opposite slopes
7 k k
1] 2D ” 3D

Chirality not = —
defined in 2D 1 |
_ ., o=
=

k,
¥

Massless Weyl fermions appear in pairs
38 (no isolated monopole)



