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I. PERIODICAL TABLE: BASICS

The topological insulators/superconductors mentioned
so far are summarized in Table I, in which we have spec-
ified the topological number in each spatial dimension.
Three fundamental symmetries are considered: T for
time-reversal symmetry, P for particle-hole symmetry,
and S for chiral symmetry. If T 2 (or P 2) equals to ±1,
then ±1 is indicated (0 if there is no symmetry).

Since S = TP , S2 can be ±1 if both TRS and PHS
exist. However, we only keep +1, since the sign of S2 can
be changed at will by a phase shift S → S′ = ±iS.

A. Altland-Zirnbauer classes

There are 9 possible combinations, {−1, 0, 1} ×
{−1, 0, 1}, for the values of T 2 and P 2. They determine
the value of S2. However, when both T 2 and P 2 are zero,
there could still be chiral symmetry (S2 = 1). So a com-
plete list has 10 symmetry classes (see Table II). They are
often called as the Altland-Zirnbauer classes (Schny-
der et al., 2008), which first appeared in the universal-
ity classes of disordered systems (Altland and Zirnbauer,
1997).

TABLE I Topological insulators and superconductors

1d 2d 3d T P S Lect

Quantum Hall insulator 0 Z 0 0 0 0 ??

Topological insulator 0 Z2 Z2 −1 0 0 ??,??

Chiral superconductor Z2 Z 0 0 1 0 ??,??

Helical superconductor Z2 Z2 Z −1 1 1 ??,??

In Table II, one can see that there are 5 non-trivial
topological classes in each dimension. We also show the
constraint on the spectral-flattened Hamiltonians Qk due
to the 3 fundamental symmetries. For example, in class
A, the Hamiltonian is not constrained by any of the sym-
metries. We assume that there are m filled levels sepa-
rated from n empty levels. The unitary rotations U(m)
and U(n) within the filled block and the empty block do
not alter the topology. Thus the space of the Hamilto-
nian matrix is the complex Grassmanian,

Gm+n,m(C) ≡ U(m+ n)

U(m)× U(n)
. (1.1)

Like a Lie group, the Grassmannian is a manifold. For
example, since U(2) = U(1)× SU(2),

G2,1(C) = SU(2)/U(1). (1.2)

This is the Hopf fibration, and it can be shown that
SU(2)/U(1) is diffeomorphic to S2.
In Table II, qk is the off-diagonal block in

Qk =

(
0 qk
q†k 0

)
. (1.3)

For example, in class AIII, there is no symmetry other
than the chiral symmetry. Thus qk is only required to be
unitary.
It worths emphasizing that such a classification is for

quadratic (non-interacting) fermionic systems with an
energy gap. If there is additional symmetry, such as the
reflection symmetry, beyond the 3 fundamental symme-
tries, then a class could be further divided to several
sub-classes. The classification of interacting systems is
a subject that is still under progress and is beyond the
scope of this Lecture.
The AZ classification can be reached via at least 4

different routes:
1. For continuous systems, one can rely on Dirac

Hamiltonian representatives, and classify them with the
mathematical tools of Clifford algebra, symmetric
spaces, and homotopy theory.
2. For lattice systems, one can use the homotopy the-

ory, or the more advanced tool of K-theory.
3. For disordered systems, by extending the works of

Wigner and Dyson, Altland and Zirnbauer showed that
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TABLE II Altland-Zirnbauer classes

Cartan’s label T P S 1d 2d 3d Space of Hamiltonian matrix Example

Standard A (unitary) 0 0 0 0 Z 0 {Qk ∈ Gm+n,m(C)} IQHE, QAHE

(Wigner-Dyson) AI (orthogonal) +1 0 0 0 0 0 {Qk ∈ Gm+n,m(C)|Q∗
k = Q−k}

AII (symplectic) −1 0 0 0 Z2 Z2 {Qk ∈ G2m+2n,2m(C)|iσyQ
∗
k(−iσy) = Q−k} TI

Chiral AIII (chiral unitary) 0 0 1 Z 0 Z {qk ∈ U(m)} π-flux state

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z 0 0 {qk ∈ U(m)|q∗k = q−k} SSH model

CII (chiral symplectic) −1 −1 1 Z 0 Z2 {qk ∈ U(2m)|iσyq
∗
k(−iσy) = q−k}

BdG D 0 +1 0 Z2 Z 0 {Qk ∈ G2m,m(C)|τxQ∗
kτx = −Q−k} chiral p-wave

(superconductor) C 0 −1 0 0 Z 0 {Qk ∈ G2m,m(C)|τyQ∗
kτy = −Q−k} dx ± idy-wave

DIII −1 +1 1 Z2 Z2 Z {qk ∈ U(2m)|qTk = −q−k} helical p-wave, He-3

CI +1 −1 1 0 0 Z {qk ∈ U(m)|qTk = q−k} dxy, dx2−y2 -wave

Note: Gm+n,m(C) is the Grassmanian; σ and τ operate on spin and particle-hole degrees of freedom respectively.

TABLE III Kitaev’s periodic table

T P S 1d 2d 3d 4d 5d 6d 7d 8d

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

there are 10 universality classes. Since the topology of the
bulk states is closely related to the universal disordered
classes of the surface states, we can use the latter to
distinguish the former. This approach is also related to
the subject of random matrix theory.

4. Different topological systems have different re-
sponses to external perturbations (electromagnetic or
others). Therefore, the response function also provides
a handle for the classification. This is closely related to
the subject of quantum anomaly in field theory.

B. Kitaev’s periodic table

In 2009, Kitaev recognized the Bott periodicity hid-
den in AZ’s table. He thus is able to generalize the classi-
fication to all spatial dimensions, which is a culmination
of the study of topological materials (see Table III). The
first 2 rows (A and AIII) belong to the so-called com-
plex classes, which has a period of 2. The remaining 8
rows belong to the real classes, which has a period of
8. That is, the topological numbers in dimension d + 8

are the same as those in dimension d.
The topological number counts the disconnected pieces

of the mapping from a d-dimensional torus (Brillouin
zone) to the space of Hamiltonian matrix, T d → X. One
can start from studying the mapping Sd → X, which is
characterized by the homotopy group πd(X). Rigorously
speaking, the base space T d can be replaced by Sd only
if πi(X) = 0, for all i < d (Avron et al., 1983). So some
information could be lost by such a simplification (which
means that a lattice system is replaced by a continuous
one).
It is relatively easy to understand the topology of the

complex classes. First, consider a huge number of Bloch
bands, so that the homotopy group can be stabilized.
That is, πk(G) become independent of the size of the
Lie group G. For example, πk(O(n)) is independent of n
if n ≫ 1. For class A (m,n ≫ 1), the relevant homotopy
groups are,

π1(Gm+n,m(C)) = 0, (1.4)

π2(Gm+n,m(C)) = Z, (1.5)

π3(Gm+n,m(C)) = 0 · · · etc, (1.6)

which give the topological numbers in the table.
A note on stabilization: the result above may need to

be revised if m,n are not large enough. For example,

π3(G2,1(C)) = Z, instead of 0. (1.7)

This is the homotopy group of the Hopf fibration.
Similarly, for the complex class AIII, it is known that

for large n,

πd∈odd((U(n)) = Z, (1.8)

πd∈even((U(n)) = 0, (1.9)

which give the topological numbers in the table.
The presence of other symmetry (such as the DIII

class) would alter the conclusion above. Even though
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intuitive, the homotopy groups are often difficult to cal-
culate. Therefore, for the rest of the 8 real classes, instead
of the homotopy approach, we will use an alternative ap-
proach based on the Clifford algebra (next Lect).

C. Analytic formula of topological number

1. Complex classes

The topology of class A is nontrivial in even dimen-
sions. A famous example is the quantum Hall effect in
d = 2. The topological numbers in d = 2n are given by
the Chern numbers,

Cn =
1

n!

∫
Td

tr

(
iF

2π

)n

, (1.10)

which are defined only in even dimensions. We have re-
placed the domain of integration Sd in Dirac models with
T d for lattice systems.

The topology of class AIII is nontrivial in odd dimen-
sions. The topological numbers in (2n + 1)-dimensions
are given by the winding numbers (Ryu et al., 2010),

ν2n+1 =
(−1)nn!

(2n+ 1)!

∫
T 2n+1

(
i

2π

)n+1

tr
[
(q−1dq)2n+1

]
(1.11)

2. Real classes

First, the topological numbers of complex classes and
real classes are related. In Table ??, let’s first focus on
the central diagonal line of Z ′s. The Z of class D (chiral
p-wave) in 2d, as that of class A in 2d (QHE), is given by
the Chern number. The Z of class DIII (helical p-wave)
in 3d, as that of class AIII in 3d, is given by the winding

number, and so on. Following this regularity, one could
expect that the topological number of class BDI in 1d is
given by a winding number.

Note that the parent states described by Chern num-
bers are all non-chiral, while those described by winding
numbers are all chiral.

Second, the Z2-Z2-Z triplet in the same row are closely
related. The state with topological number Z can be
considered as the parent state of lower dimensional ones
in the same symmetry class. For example, class AII in 4d
is the QHE with topological number Z. By dimensional
reduction, one can get the 3d and 2d TIs with topological
numbers Z2 (see Lect ??). Similarly, one expects that the
3d helical p-wave in class DIII could be linked with the
topological SCs with the same symmetry in 2d and 1d.
See Sec. 4 of Ryu et al., 2010 for more details.

The dimension d is not necessarily the spatial dimen-
sion. It is the dimension of parameter space, which in-
cludes the Bloch momentum, plus possible extra param-
eters of the Hamiltonian (such as deformation).
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