
Fig from Araki, Ann der Phy 2019

Weyl semimetal



energy

Insulator metal        semimetal semiconductor  semiconductor

(n-type) (p-type)

Band theory of solids

Small DOS near  Fermi level. 

Graphene as a 2D semi-metal.

3D analogue of graphene?

 Weyl semimetal



Accidental degeneracy between 2 levels (2D, 3D)
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• Wigner-von Neumann “theorem” (1929):

2-level H can be expanded by Pauli matrices,

• 3D: one (or several) point degeneracy in 3D k-space

• 2D: unlikely to have a point degeneracy in 2D k-space

(Co-dimension is 3)
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Stability of the Dirac point in graphene
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• TRS

• SIS
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TRS+SIS no termz

• point degeneracy is further protected by C3 symmetry (Ch 7, Bernevig)

 Co-dimension is 2
(point degeneracy in 2D BZ)

(for graphene, px)

Hasegawa et al, PRB 2006



• 2 level crossing in 2D (SS of TI, graphene) 

m
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• 2 level crossing in 3D (Weyl semi-metal)
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(Recall the Berry curvature of
Zeeman coupling)

Consequence of level crossing

A Weyl point is a “monopole” in momentum space 

(source or sink of Berry flux)

e.g.,

e.g.,



Berry curvature 
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• Near a Weyl point

Chirality and monopole charge

• Berry flux (~monopole charge) is quantized     

FF=2pC1.   
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Stability of Weyl point

ி

Shift position of node Renormalize vF

• Weyl node can only appear/disappear by 

pair creation/annihilation

Weyl point is stable against perturbation
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• Energy band in 1D BZ • Energy band in 3D BZ

S1

S2

Zeros need to appear in pairs

k

E(k)

Total Berry flux from Weyl points 
needs to be zero.

Nielsen-Ninomiya theorem (1981):

To be precise, for a lattice in odd space dimensions, without breaking 

any of these: translation symmetry, chiral symmetry (locality, hermiticity), 

massless Weyl fermions must appear in pairs.

Aka Fermion-doubling theorem, no-go theorem

In a lattice, massless Weyl fermions must appear in pairs with opposite chiralities.

Note: 1. Used to be a problem in lattice QCD

2. In 2 dim, chirality is not well-defined. E.g., graphene

二宮正夫



Winding number again

Index of a point defect in a vector field

Fig from Jonas Kibelbek

Topological origin of the Nielsen-Ninomiya theorem 



Hopf-Poincare theorem

- Connecting index of point defect with topology
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Euler 
characteristics

For a torus
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Brillouin zone as a torus (1D, 2D, 3D)

Berry connection A(k) as a vector field in BZ



Symmetry and Weyl point

• TR Symm

• SI Symm
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 A monopole at –k0

with the same chirality

 A monopole at –k0

with the opposite chiralities

• Nielsen-Ninomiya theorem: always a pair with opposite chirality

Meng T thesis 2012

0( )FH v k k   
 

A monopole at k0

Dirac point (but can be protected by crystal symmetry) 

Not topologically stable



• Dirac fermion (1928)

• Relativistic spin ½ fermion

• 4 components

• Electron, proton …

• Weyl fermion (1929)

• Massless ½ fermion 

• 2 components

• Not found in nature

• Majorana fermion (1937)

• Being its own anti-particle

• 2 independent components

• Candidate for neutrino
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Families of fermions in
Particle physics
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Realizations in 
Solid-state 

Graphene with spin
(2004)

TaAs…
(2015)

Semi-SC hybrid 
structure
(2012, 14, 16)

砷化鉭



From Dirac SM to Weyl SM

Young et al, PRL 2012

Break SIS Break TRS

B

X

Dirac pt

Break 4-fold symm

WP
DP

Not topo stable



Searching for degenerate point

1. Band-inversion mechanism (e.g., Na3Bi, Cd3As2)

Fig: Narang et al, Nat Mater 2021

• 2 branches from different 

IRs (with different symm

eigenvalues, no coupling)

of the symmetry.

• Dirac point could disappear 

if band-inversion is tuned 

away (symmetry unchanged)

• Avoided crossing due 
to coupling of 2 bands

Along some symm axis:



2. Symmetry-enforced mechanism (e.g., PdTe2, PtTe2, PtSe2) 

Search for space group that supports small groups Gk with 4-dim IR (FDIR)

• Possibility can be excluded for symmorphic space groups in 3D                 

(see Armitage’s RMP, 2018)

• Search within nonsymmorphic groups (i.e., with glide planes, screw axes)

• DPs usually are located on BZ boundary (face, edge, or corner)

共型空間群

glide 
plane

(a) (b)

screw axis

Reflection and glide translation and screw





Transition metal monopnictide

• With nonsymmorphic space group

• DP  WP by breaking SIS 

磷族

Huang et al, Nature Comm 2015

24 Weyl nodes



Use
Burkov-Balent model
as an example

Physics related to Weyl fermions

1. Anomalous Hall effect

2. Fermi arc of surface state

3. Chiral anomaly

4. Chiral magnetic effect 

5. …



Burkov-Balent model - multi-layer heterostructure

NI

Critical 
point 

ts > td : normal insulator ts < td : topological insulator 

TI

(Burkov and Balent PRL 2011)

Normal insulator
Topological 
insulator

Coupling 
between surface 
states:

WP as a critical point of QPT:
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Two SS’s from 
one TI slab

Multiple layers

Fourier 
transform

Each kz is an independent subsystem



Unitary 
rotation



Band structure

𝑀ఛ೥
(kz) =

Gap closes when

Hall conductivity

Semi-quantized Hall conductivity

଴



Phase diagram of Burkov-Balent model

break TRS by 
magnetization m

Dirac node 
(unstable)

Weyl:
𝑡ௌ − 𝑡஽ < 𝑚 < 𝑡ௌ + 𝑡஽

 𝑚௖ଵ     𝑚௖ଶ
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Brillouin zone

3D = a stack of 2D layers

k0
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One 2D layer for each kZ

Surface BZ 
for [100]

• 2 Weyl nodes are created at origin 

• They are linked by a string of gauge 

singularity (Dirac string)

Anomalous QHE in Weyl SM
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Hall conductivity

Cut through Dirac 
string (the center of 
vortex)

Total Hall conductivity



Kramers-Weyl point
with large Fermi arcs

Chang et al, Nat Material 2018



Surface state and Fermi arc

2D Surface BZ for [100]

ky

kz

Filled SS

Weyl point

ky

E

Chiral edge state of 
2DEG

m

No edge state

(Fermi level at Weyl node)

(Wan et al, PRB 2011)

Fermi arc 
of SS
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Weyl point and Fermi arc (3D view) 

• SS connects to bulk states at Weyl nodes Fermi arc is impossible in pure 
2D system

Surface Brillouin zone

Fig from Kargarian et al, Sci Rep 2015

Haldane 1401.0529



Fermi arc in
Transition metal monopnictide

Z.K. Liu et al, Nature Material 2015

theory experiment
(ARPES)

TaAs



Weyl orbit
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Potter, Kimchi, and Vishnawath, Nat Comm 2014

De Haas-van Alphen oscillation


