Weyl semimetal

Fermi arc
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energy

Band theory of solids

Insulator

metal

semimetal semiconductor semiconductor
f (n-type) (p-type)

Small DOS near Fermi level.
Graphene as a 2D semi-metal.
3D analogue of graphene?

- Weyl semimetal



Accidental degeneracy between 2 levels (2D, 3D)

Avoided crossing Crossing

« Wigner-von Neumann “theorem” (1929):

2-level H can be expanded by Pauli matrices,

H=d,(k)+d (k)o,+d (k)o,+d_ (k)o,

> E, =d,t\d’ +d’ +d’

— degeneracy only whend, =d =d_ =0
(Co-dimension is 3)

» 3D: one (or several) point degeneracy in 3D k-space

» 2D: unlikely to have a point degeneracy in 2D k-space
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Stability of the Dirac point in graphene

« TRS H(k)* = H(=k)
~ dy(k), d, (k),d,(k) = even, odd, even
« SIS (for graphene, n=0,)
o H(k)a, = H(—k)
— d,(k), d, (k), d,(k) = even, odd, odd

TRS+SIS —no o, term <« Co-dimension is 2
(point degeneracy in 2D BZ)

« point degeneracy is further protected by C; symmetry (Ch 7, Bernevig)

Hasegawa et al, PRB 2006



Consequence of level crossing

* 2 level crossing in 2D (SS of Tl, graphene)
ed., Hgg = a(o x k), + O(k?)

m) FF = Fné?(k)

« 2level crossing in 3D (Weyl semi-metal)

€9 H2><2(E) =k-¢

# r — T li (Recall the Berry curvature of
+ 2 k? Zeeman coupling)

A Weyl point is a “monopole” in momentum space

(source or sink of Berry flux)



Chirality and monopole charge

* Near a Weyl point

Hax2 (@ = ho(§) +h(@) - 6, G=kotk
ahl
= ho@ + (ko) -3 + 5 k; 0
1_5 : E 0;
F1 Chirality (or helicity) f f
" N\
X = sgn|det or sgn(V, - U, X Us) - ‘ot‘.
Ok; N
) “ZHN
g, H = t+vpk - o, =+
€.8 Vpk -0 X =+
Berry curvature ‘
FZ :li \\ ‘//
_ 3 ol
2 k -; ‘ ” e
* Berry flux (~monopole charge) is quantized f ;\\

O =2rC,.
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Stability of Weyl point
Weyl point is stable against perturbation

H=1vé -k+H
a general perturbation:

H' =a(k)+b(k) - ¢

> H' = a(k) + b(0) - & +
dk;

7 N
Shift position of node Renormalize Vg

ij'l'

e. g., H = v6 -k +mo,

Weyl node can only appear/disappear by

pair creation/annihilation



Nielsen-Ninomiya theorem (1981): — =1k

Aka Fermion-doubling theorem, no-go theorem

In a lattice, massless Weyl fermions must appear in pairs with opposite chiralities.

 Energy band in 1D BZ * Energy band in 3D BZ
E(k) 3
_____________________ é%
: + s,
S;
Zeros need to appear in pairs Total Berry flux from Weyl points

needs to be zero.

To be precise, for a lattice in odd space dimensions, without breaking
any of these: translation symmetry, chiral symmetry (locality, hermiticity),

massless Weyl fermions must appear in pairs.

Note: 1. Used to be a problem in lattice QCD
2. In 2 dim, chirality is not well-defined. E.g., graphene



Topological origin of the Nielsen-Ninomiya theorem

Winding number again

Index of a point defect in a vector field

Fig from Jonas Kibelbek



Hopf-Poincare theorem

- Connecting index of point defect with topology

> ind(v,) = 7(M) Eder

characteristics

For a sphere

Zind(vl.) =2

For a torus

2. ind(v))=x(T*)=0

Brillouin zone as a torus (1D, 2D, 3D)

Berry connection A(k) as a vector field in BZ



Symmetry and Weyl point

H=tv.0-(k—k,) A monopole at k,

TR Symm k— -k, oc—> -0

- - - A monopole at —k
H—>H'= iVFO'-(k +k0) with the same chirality

+ Sl Symm K>k, 656

I - A monopole at -k,
H—->H'=Fv,0- (k + ko) with the opposite chiralities

* Nielsen-Ninomiya theorem: always a pair with opposite chirality

TRS | IS | Implications Min. number
X x | Weyl nodes can be at any k and may have different energies. ' 2
v x | Weyl node at I_L:D < Weyl node of same chirality at —f_.:g. 4
X v | Weyl node at ko < Weyl node of opposite chirality at i, 2
v' | v | Not topologically stable none

X
Dirac point (but can be protected by crystal symmetry)

Meng T thesis 2012




Families of fermions in
Particle physics

« Dirac fermion (1928)

Relativistic spin %z fermion
4 components

Electron, proton ...

« Weyl fermion (1929)

Massless 72 fermion
2 components

Not found in nature

* Majorana fermion (1937)

Being its own anti-particle
2 independent components

Candidate for neutrino
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Realizations in
Solid-state

Graphene with spin
(2004)

TaAs... f#{E$E
(2015)

Semi-SC hybrid
structure
(2012, 14, 16)



From Dirac SM to Weyl SM

Break SIS Break TRS

B ey

X v

Axx

Dirac pt

*-

Young et al, PRL 2012

Not topo stable



Searching for degenerate point

1. Band-inversion mechanism (e.g., Na;Bi, Cd;As,)

Topological « Avoided crossing due
insulators .
> to coupling of 2 bands
Band inversion
SOC
Along some symm axis:
2 branches from different
IRs (with different symm
Weyl igenval n lin
semimetals eigenvalues, no coupling)
Dimc of the symmetry.
semimelals

* Dirac point could disappear

if band-inversion is tuned

away (symmetry unchanged)
Fig: Narang et al, Nat Mater 2021



2. Symmetry-enforced mechanism (e.g., PdTe,, PtTe,, PtSe,)

Search for space group that supports small groups G, with 4-dim IR (FDIR)

Possibility can be excluded for symmorphic space groups in 3D
(see Armitage’s RMP, 2018) HANZE R
Search within nonsymmorphic groups (i.e., with glide planes, screw axes)

DPs usually are located on BZ boundary (face, edge, or corner)

(@ e (b)
glide ¢
plane ®
@
®
! !
O screw axis

Reflection and glide translation and screw



CRYSTALLOGRAPHY
LATTICES
POINT GROUPS
SPACE GROUPS
SYMMORPHIC
NON-SYMMORPHIC

fOf the 157 nonsymmorphic three-dimensional space groups, 155

involve glide planes or screw axes, and two are exceptional cases.

From the 32 point groups and the different Bravais
lattices, we can get 73 space groups which involve ONLY
rotations, reflection and rotoinversions.

Non-symmorphic space groups involve translational
elements (screw axes and glide planes).
There are 157 non-symmorphic space groups

230 space groups in total!



Transition metal monopnictide il

« With nonsymmorphic space group
« DP -> WP by breaking SIS

(b)

® Ta/Nb (100) _
» As/P Mirror planes

24 Weyl nodes

Huang et al, Nature Comm 2015



Physics related to Weyl fermions

1.

2.

3.

4.

Anomalous Hall effect
Fermi arc of surface state
Chiral anomaly

Chiral magnetic effect

|

Use
Burkov-Balent model
as an example



WP as a critical point of QPT:

Burkov-Balent model - multi-layer heterostructure
(Burkov and Balent PRL 2011)
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Two SSsfrom H=vr,® (e xk, ) - 24+ ml®o, +ts7. ®1
one Tl slab

Multiple layers H = Z [v7.(o x k1) - 24+ mo. + teme] ¢y
z

+ th(T+CICl+1 + T_c;rc;_l),
l

T+ = (Tmﬂ:iTy)/z, C| = (Clu,cld)T

Fourier i 1 ildk. 1

o = —— e o &

transform l Z k-
VN -

B = Z[sz(axkl)-z":chkz
k.
T

+ mo.c;_ck,
+ tsrmc};zckz
+ td(e_ikzd’.!q_CLCkZ + BZksz_CLckz)jl

_ ho + mo, ts+ tge k=2 .
= ik Ck, Ck-
. ts +tge "= —hg + mo,

Z My, C;Tczckzv Each k, is an independent subsystem
k-



sz = TzhO + mUZ
+ taTe +ta(e” =%, + tF=%1_)

ho =v(o xky)-2

Unitary U— 1 0
rotation 0 o

Tay — UTTm,yU = Tz,y0z,

s P UTam,yU = Ty0z,y-

sz = h() + Mo,
4 [tsTe + ta(e ®=07, + =91 )]0,

z

He. = ho+ [m + 7 \/tg + 2 + 2ttqcos(k.d)| o,

N 7

M., (k)
= v(o xky) 24+ M, (k;)o.,



Band structure

e = i\/v2(k§ +k2) + M2 (k)

Gap closes when

m? — (t2 + t3)

cos(kod) = TS

lts —ta| < m < |ts + t4]
N— — N——

mea me2

Hall conductivity

1
O?JD = L_ZJ%{DU{Z)
z g

m/d dk 2 k
] ZO%ID(kz = 6__0
-

Semi-quantized Hall conductivity
2
1
s
h d

M, (k) =m+ . \/tg + t2 + 2t 4t 4 cos(k.d)

T

Z 1k
—+ 'z
! .d / } EO
Dirac string vy




Phase diagram of Burkov-Balent model

Dirac node
(unstable) ~ |

Tl

NI

(a) m=0

break TRS by
magnetization m

tq
Tl
eyl
m NI
0 m i
(b) m#0
Weyl:

Its — tp| < m < ts + t
meq meo



Anomalous QHE in Weyl SM

3D = a stack of 2D layers One 2D layer for each k,
o Hall conductivity
Brillouin zone .
<& GH (kz) = O
° + o2 Cut through Dirac
o | < o, (k,)=— string (the center of
J i - h vortex)
k Total Hall conductivity
Z
1 e’k
// kK Surface BZ o’ =—>» o’ (k,)=——L
y H v Mz
Ky for [100] L. ; h 2z

« 2 Weyl nodes are created at origin
» They are linked by a string of gauge

singularity (Dirac string)



Topological quantum properties of chiral crystals

Chiral crystals are materials with a lattice structure that has a well-defined handedness due to the lack of inversion, mirror or
other roto-inversion symmetries. Although it has been shown that the presence of crystalline symmetries can protect topo-
logical band crossings, the topological electronic properties of chiral crystals remain largely uncharacterized. Here we show
that Kramers-Weyl fermions are a universal topological electronic property of all non-magnetic chiral crystals with spin-orbit

coupling and are guaranteed by structural chirality, lattice translation and time-reversal symmetry. Unlike conventional Weyl
fermions, they appear at time-reversal-invariant momenta. We identify representative chiral materials in 33 of the 65 chiral
space groups in which Kramers-Weyl fermions are relevant to the low-energy physics. We determine that all point-like nodal
degeneracies in non-magnetic chiral crystals with relevant spin-orbit coupling carry non-trivial Chern numbers. Kramers-Weyl
materials can exhibit a monopole-like electron spin texture and topologically non-trivial bulk Fermi surfaces over an unusually
large energy window.

\kz '
< ™,
Kramers-Weyl point :
with large Fermi arcs K,
g k:,./.*.'\o» . f )

Chang et al, Nat Material 2018



Surface state and|[Fermi arc  (Wan et al, PRB 2011)

L k, =~ ’ o’ (k.)=0
No edge state
2D Surface BZ for [100] YN
(Fermi level at Weyl node) \\ //

_ /\ Weyl point
| / \\ e - (k )_ ez

\\\~_;/ O-H z) h

Filled SS /\ H Chiral edge state of
N 2DEG
' Fermi arc %\ |

Kk ' of SS

L
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Weyl point and Fermi arc (3D view)

top surface
bottom surface

Surface Brillouin zone

@ : :
bottom surface
bottom surface 1 r 11
top surface 14 L P
. : ko i 5 by . top surface : )
’ i Fig from Kargarian et al, Sci Rep 2015
* SS connects to bulk states at Weyl nodes Fermi arc is impossib|e in pure
Haldane 1401.0529

2D system



Dirac
point

Fermi arc in
Transition metal monopnictide

ﬁ@?

K s TaAs Surface

-arc

P . F}’mi

Increasing SOC/increasing splitting {AK)’

® WP- @ WP+

theory experiment
(ARPES)

Z.K. Liu et al, Nature Material 2015



Weyl orbit

top surface
bottom surface

T = 2tare+2tpuik-

h

En = (71+5)T. n=20,1,2---

=) De Haas-van Alphen oscillation

Potter, Kimchi, and Vishnawath, Nat Comm 2014




