I. Berry curvature of Bloch states
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B. Quantum Hall effect
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Review: Symmetry:

Cell-periodic Bloch state Space inversion
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Under one-band approximation
(same as the adiabatic approximation)

Velocity of electron in an electric field,
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Pf. Choose time-dependent gauge
E=-0A/0t, A =—-Et
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To the first-order (see Prob. 1),
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Current density
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For a filled band n, the integral over F is an integer

1

First Chern number C’{") = o koFnz(k) A
BZ

As a result, the Hall conductivity is quantized.

>> Quantum Hall effect



The topology in quantum Hall effect

Quantized Hall Conductance in a Two-Dimensional Periodic Potential
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The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential I/, The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U /kw,.

PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b

Hall conductivity for the n-th band
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First, classical Hall effect (1879)
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Hall effect in 2-dimensional electron gas (2DEG)

GaAs/AlGaAs heterojunction 2DEG Conduction electrons
are trapped here
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« Atlow T, the dynamics along z-direction
is frozen in the ground state > 2DEG

» Apply a strong B field, then there are
Landau levels (LLs)
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Landau levels Increasing B

(LLs) (@) (c)
) —— ,J
5
hwc'
Density Di‘Staj:es
Cyclotron energy Ao, = 1.16H x 10”8 eV xﬁ*
= 1.34H x 1074k "
(H in Gauss) (for GaAs, m*=0.067m)

» Landau levels have non-zero Chern numbers
« Hall conductance is quantized whenever the

Fermi energy lies inside an energy gap
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[Integer] Quantum Hall effect (von Kiitzing, 1980)
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Hall resistivity and conductivity at plateaus
b = 1hr h/e2 = 25.81280745 k-ohm
H n e’ accurate to 109, a defined value after 1990
. 82 fine structure constant, o = e? [Ameghe.
Oy =n— [Note: After 2019, the values of e, h, and ¢ are defined,

and only ¢ is uncertain.|
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Disorders and Hall plateaus

(there is no plateaus in a clean 2DEG)

Broadened LLs

rl. extended
4\ -_states ™

localized
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Aoki, CMST 2011
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To observe IQHE, we need

« Two-dimensional electron system

» The breaking of time-reversal symmetry

 Filled energy bands (insulator) with non-zero Chern numbers
« Landau levels (IQHE)
« Bands with magnetization (QAHE) < next chap

(Low temp, high B field are usually required)

Examples of Macroscopic Quantum Phenomena
« Superconductivity (Onnes, 1911)

« Superfluidity (Kapitsa, 1937)
« Quantum Hall effect (von Klitzing, 1980)

« Bose-Einstein condensation (Cornell and Wieman, 1995)



Quantum Hall Effect in 2D systems

Need to break time-reversal symmetry

» Si MOSFET (von Klitzing et al, 1980)

» (GaAs heterojunction (Stormer, 1982)

» Graphene (Novoselov, Science 2007)

» Polar oxide heterostructures (Tsukazaki et al, Science 2007)
[Transition Metalg Twisted bilayer graphene (Lee et al, PRL 2011)

DIohaloogenide = MD: WSe, (Mowva et al, PRL 2017)
s . : e ovva et al,
L B EY) 5

* |InSe (Bandurin et al, Nat Nanotech 2017)
* Tellurene (Qiu et al, Nat Nanotech 2020)
« Twisted Bilayer MoTe, (Cai et al, Nature 2023)

16



Before introducing the proof that C, is an integer,

let’s review the Berry curvature of a spin-1/2 electron:
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The presence of the Dirac string is an example

21 of the topological obstruction.
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In Fig. 2(a), we see a loop C7 near the north pole, and
a loop C5 near the south pole. The area inside C7 1s
designated as Sp; the area outside is S;. Similarly the
area inside Cy is Ss. outside is So. It is not difficult to
see that,

f df-AN:/ (1’-23-]?:1:7é an'Fi. (1‘36)
Co S'g So

Vorticity of the
singularity

The LHS approaches 27 as C> shrinks to zero: while the
last integral approaches 0. The inequalities arise because
the Stokes theorem fails if A is singular in the domain of
surface integration.
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We can use two patches of gauge to avoid the singularity

> (IQa-Fi

=) Total Berry flux is quantized.

The same analysis applies to the magnetic monopole in real space.
So the flux of a magnetic monopole (or the monopole charge)

needs be quantized.
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Now, back to the quantum Hall system What is spe-

cial about the QH Bloch state is that there exist nodal
points in the BZ, where u,y, = 0. Similar to the south
pole in Fig. 2(a), the phase is ambiguous at k;, and the
Berry connection A, (k) is singular there (see Fig. 3(a)).

BZ

Gauge |

Assume there is only one singular point, then the line in-
tegral of A, (k) around a small loop C' enclosing k; (and
divided by 27) equals the first Chern number (similar
to the loop Cs in Fig. 2(a)). It is sometimes called the
vorticity of the singular point.
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Robust Edge state in quantum Hall insulator

3 levels of understanding

1. Classical Skipping orbit (chiral)

2. Semiclassical Bending of LLs
near boundary

Conduction band

1 GaPAsta tes

Valence band

3. Quantum Energy levels of edge
state appear within
an energy gap

ENERGY

MOMENTUM
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Bulk-edge correspondence in
topological materials

Different topological classes

Semiclassical picture:
energy levels must cross each other near the
interface (otherwise the topology won’t change).

— gapless states bound to the interface,
which are protected by topology.

* No general proof, but (for non-interacting
electrons).no counter example either.



