I. Review of Berry phase

- A. Non-degenerate energy level
- B. Geometric analogy
- C. Degenerate energy levels

System with fast and slow variables

Example: a vibrating H_2^+ molecule,

Instead of solving the full time-dependent Schroedinger eq., one can use

the Born-Oppenheimer approximation:

- "Slow variables **R**_i are treated as *parameters* λ(*t*)
 (the kinetic energies from **P**_i are neglected)
- Solve time-independent Schroedinger eq.

$$H(\vec{r},\vec{p};\vec{\lambda})\left|n,\vec{\lambda}\right\rangle = \varepsilon_{n,\vec{\lambda}}\left|n,\vec{\lambda}\right\rangle$$

"snapshot" solution (single-valued in λ)

Adiabatic evolution of a quantum system

• Energy spectrum

$$H_{\lambda}|n,\lambda\rangle = \varepsilon_{n\lambda}|n,\lambda\rangle$$

• After time *t*

$$|\Psi_{n\boldsymbol{\lambda}}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt'\varepsilon_{n\boldsymbol{\lambda}(t')}}|n,\boldsymbol{\lambda}(t)\rangle$$

dynamical phase

If the characteristic frequency of motion $\Omega_0\ll\Delta_0/\hbar$, then there is *no* inter-level transition. (Quantum adiabatic theorem)

• Phases of the snapshot states at different λ 's are *independent* and can be assigned arbitrarily

$$|n,\vec{\lambda}\rangle' = e^{i\gamma_n(\vec{\lambda})}|n,\vec{\lambda}\rangle$$

Do we need to worry about this phase?

No need! • Fock, Z. Phys 1928

• Schiff, Quantum Mechanics (3rd ed.) p.290

Pf : Consider the *n*-th level,

 $H | n, \vec{\lambda} \rangle = \varepsilon_{n,\vec{\lambda}} | n, \vec{\lambda} \rangle$ snapshot state $| \Psi_{n\vec{\lambda}}(t) \rangle = e^{i\gamma_n(\vec{\lambda})} e^{-i\int_0^t dt' \varepsilon_n(t')} | n, \vec{\lambda} \rangle$ $H | \Psi_{n\vec{\lambda}}(t) \rangle = i\hbar \frac{\partial}{\partial t} | \Psi_{n\vec{\lambda}}(t) \rangle$ $\dot{\gamma}_n = i \langle n, \vec{\lambda} | \frac{\partial}{\partial \vec{\lambda}} | n, \vec{\lambda} \rangle \cdot \dot{\vec{\lambda}} \neq 0$ $\equiv A_n(\lambda)$

Redefine the phase, $|n, \vec{\lambda}\rangle' = e^{i\phi_n(\vec{\lambda})} |n, \vec{\lambda}\rangle$ (ϕ_n is single-valued) $\Rightarrow A_n'(\lambda) = A_n(\lambda) - \frac{\partial \phi_n}{\partial \vec{\lambda}}$ Choose a $\phi(\lambda)$ such that, $A_n'(\lambda) = 0$, hence removes this extra phase. However, there is one problem:

 $\nabla_{\vec{\lambda}}\phi = \vec{A}(\vec{\lambda})$ does not always have a (global) well-defined solution!

Two possible cases:

M. Berry, 1984 : The parameter-dependent phase is NOT always removable!

For periodic motion with $\lambda(T)=\lambda(0)$, we have, in general

$$|\psi_{\vec{\lambda}(T)}\rangle = e^{i\gamma_C} e^{-i\int_0^T dt'\varepsilon(t')} |\psi_{\vec{\lambda}(0)}\rangle$$
 Index *n* neglected

• Berry phase (aka geometric phase)

$$\gamma_C = \oint_C \left\langle \vec{\lambda} \right| i \frac{\partial}{\partial \vec{\lambda}} \left| \vec{\lambda} \right\rangle \cdot d\vec{\lambda} \neq 0$$

Depends on the geometry of the path C, independent of the rate

γ̈́

• Berry phase is path-dependent

if
$$\oint_C = \int_1^{+} + \int_2^{-} \neq 0$$
, then $\int_1^{-} - \int_{-2}^{-} \left(= \int_1^{+} + \int_2^{-} \right) \neq 0$
Phase difference
 $a = \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\$

Some terminology

• **Berry connection** (aka Berry potential)

$$\vec{A}(\vec{\lambda}) \equiv i \left\langle \vec{\lambda} \right| \nabla_{\lambda} \left| \vec{\lambda} \right\rangle$$

• Stokes theorem (3-dim here, can be higher)

$$\gamma_C = \oint_C \vec{A} \cdot d\vec{\lambda} = \int_S \nabla_{\vec{\lambda}} \times \vec{A} \cdot d\vec{a}$$

• Berry curvature (aka Berry field)

$$\vec{F}(\vec{\lambda}) \equiv \nabla_{\lambda} \times \vec{A}(\vec{\lambda}) = i \left\langle \nabla_{\lambda} \psi_{\vec{\lambda}} \right| \times \left| \nabla_{\lambda} \psi_{\vec{\lambda}} \right\rangle$$

For a small loop,

$$\gamma_C = \int_S \vec{F} \cdot d\vec{a} \simeq \vec{F} \cdot d\vec{a}$$

- Gauge transformation
 - $|\psi_{\vec{\lambda}}\rangle \rightarrow e^{i\chi(\vec{\lambda})}|\psi_{\vec{\lambda}}\rangle$ $\vec{A}(\vec{\lambda}) \rightarrow \vec{A}(\vec{\lambda}) \nabla_{\lambda}\chi$

•
$$\vec{F}(\vec{\lambda}) \rightarrow \vec{F}(\vec{\lambda})$$

•
$$\gamma_C \to \gamma_C$$

Redefine the phases of the snapshot states (χ is single-valued)

Berry curvature and Berry phase are not changed under the G.T.

Analogy with electromagnetism

Electromagnetism	Quantum anholonomy		
vector potential $\mathbf{A}(\mathbf{r})$	Berry connection $\mathbf{A}(\boldsymbol{\lambda})$		
magnetic field $\mathbf{B}(\mathbf{r})$	Berry curvature $\mathbf{F}(\boldsymbol{\lambda})$		
magnetic monopole	degenerate point		
magnetic charge	Berry index (aka monopole charge,		
magnetic flux $\Phi(C)$	Berry phase $\gamma(C)$ topological charge, etc.		

A canonical example (we'll cite this result several times later)

A spin-1/2 particle in a *slowly changing B* field

Real space

 $H_{\vec{\lambda}=\vec{B}}=\mu_{\scriptscriptstyle B}\vec{B}\cdot\vec{\sigma}$

• Eingenvalues and eigenstates

$$\varepsilon_{\pm} = \pm \mu_B B$$

$$\hat{n},+\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix}, \ |\hat{n},-\rangle = \begin{pmatrix} -e^{-i\phi}\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{pmatrix}.$$

Level crossing at B=0

• Different choices of phases (gauge choices)

 $|\hat{n},\pm\rangle' = e^{\pm i\phi}|\hat{n},\pm\rangle$ are also single-valued. You can check that $|\hat{n},\pm\rangle$ have ϕ -ambiguity at $\theta = \pi$ (but not at $\theta = 0$), while $|\hat{n},\pm\rangle'$ have ϕ -ambiguity at $\theta = 0$ (but not at $\theta = \pi$).

Parameter space

Berry connection

$$\frac{\partial}{\partial \mathbf{B}} = \frac{\partial}{\partial B}\hat{e}_r + \frac{1}{B}\frac{\partial}{\partial\theta}\hat{e}_\theta + \frac{1}{B\sin\theta}\frac{\partial}{\partial\phi}\hat{e}_\phi$$
$$\mathbf{A}_+(\mathbf{B}) = i\langle \mathbf{B}, + |\frac{\partial}{\partial\mathbf{B}}|\mathbf{B}, + \rangle$$
$$= -\frac{1}{2B}\frac{1-\cos\theta}{\sin\theta}\hat{e}_\phi.$$

~ vector potential of a monopole

nilarly,
$$\mathbf{A}_{-}(\mathbf{B}) = \frac{1}{2B} \frac{1 - \cos \theta}{\sin \theta} \hat{e}_{\phi}$$

Both $\mathbf{A}_{\pm}(\mathbf{B})$ are singular along $\theta = \pi$. (relates to the ϕ -ambiguity)

• Berry curvature

$$\Rightarrow \mathbf{F}_{\pm}(\mathbf{B}) = \nabla_{\mathbf{B}} \times \mathbf{A}_{\pm}(\mathbf{B}) = \mp \frac{1}{2} \frac{B}{B^2}$$

~ magnetic field of a monopole

Point of level crossing is the source of Berry curvature

• Berry phase

$$\Rightarrow \gamma_{\pm}(C) = \mp \frac{1}{2} \Omega(C)$$

spin × solid angle

 Berry index (topological charge)

$$\frac{1}{2\pi} \int_{S_B^2} d^2 \mathbf{a} \cdot \mathbf{F}_{\pm}(\mathbf{B}) = \mp 1$$

Gauge transformation

$$\begin{aligned} |\hat{n}, \pm\rangle' &= e^{\mp i\phi} |\hat{n}, \pm\rangle \\ \mathbf{A}_{\pm}'(\mathbf{B}) &= \mathbf{A}_{\pm}(\mathbf{B}) \pm \frac{\partial\phi}{\partial\mathbf{B}} \\ &= \mathbf{A}_{\pm}(\mathbf{B}) \pm \frac{1}{B\sin\theta} \hat{e}_{\phi} \\ &= \pm \frac{1}{2B} \frac{1 + \cos\theta}{\sin\theta} \hat{e}_{\phi} \end{aligned}$$

Both $\mathbf{A}'_{\pm}(\mathbf{B})$ are singular along $\theta = 0$.

Experiments : Bitter and Dubbers , PRL 1987 Neutrons fly through a helical magnetic field

Berry phase ~ Anholonomy angle

Fiber bundle = U(1) phase x λ -space

Fig. from *Fiber bundles and quantum theory*, by Bernstein and Phillips, Sci. Am. 1981

Revisiting parallel transport (PT)

• PT along a geodesic curve

• PT along <u>a general curve</u>

 α_A =?

The earlier definition of PT cannot be right (e.g., transporting a vector along a general curve on a flat surface).

New definition of PT:

v does not twist around the local vertical axis (normal vector **n**) as we move along a curve *C*.

A moving frame on a curved surface

Parallel transport condition of a

$$\dot{\tilde{\mathbf{e}}}_{1} = \boldsymbol{\omega} \times \tilde{\mathbf{e}}_{1}$$
$$\boldsymbol{\omega} \cdot \mathbf{n} = \boldsymbol{\omega} \cdot \tilde{\mathbf{e}}_{1} \times \tilde{\mathbf{e}}_{2}$$
$$= \boldsymbol{\omega} \times \tilde{\mathbf{e}}_{1} \cdot \tilde{\mathbf{e}}_{2} = \dot{\tilde{\mathbf{e}}}_{1} \cdot \tilde{\mathbf{e}}_{2} = 0$$
PT condition

Define complex vector

$$\psi = \frac{1}{\sqrt{2}} \left(\tilde{\mathbf{e}}_1 + i \tilde{\mathbf{e}}_2 \right)$$

$$\rightarrow \operatorname{Im}\left(\psi^* \cdot \dot{\psi}\right) = 0, \text{ or } \dot{\psi}^* \cdot \dot{\psi} = 0.$$

Alternative form of the PT condition

moving triad $(n, \tilde{e}_1, \tilde{e}_2)$:

No rotation around *n*,

$${oldsymbol \omega}\cdot{f n}=0$$
Angular velocity

PT frame vs fixed frame:

fixed triad (n, e_1, e_2) moving triad $(\boldsymbol{n}, \tilde{e}_1, \tilde{e}_2)$ define $\phi = \frac{1}{\sqrt{2}} \left(\mathbf{e}_1 + i \mathbf{e}_2 \right)$ $\psi = \frac{1}{\sqrt{2}} \left(\tilde{\mathbf{e}}_1 + i \tilde{\mathbf{e}}_2 \right)$ $\psi(\mathbf{r}) = \phi(\mathbf{r})e^{i\alpha(\mathbf{r})}$ then $\psi^* \cdot d\psi = \phi^* \cdot d\phi + id\alpha$ $\implies \alpha(C) = i \oint_C \phi^* \cdot \frac{d\phi}{d\mathbf{r}} \cdot d\mathbf{r}$ versus Analogy: $\gamma(C) = i \oint_C \left\langle \phi_{\vec{\lambda}} \left| \nabla_{\lambda} \phi_{\vec{\lambda}} \right\rangle \cdot d\vec{\lambda} \right.$ **Snapshot states**

 e_2 \tilde{e}_2 e_1 α \tilde{e}_1 fixed moving

PT condition

 $i\psi^*\cdot\dot{\psi}=0$

PT states

Analogy

	geometry	quantum state
fixed basis	$\phi(x)$	$ \phi; \boldsymbol{\lambda} \rangle$
PT basis	$\psi(x)$	$ \psi; \boldsymbol{\lambda} angle$
PT condition	$i\psi^*\cdot\dot{\psi}=0$	$i\langle\psi \dot{\psi} angle=0$
holonomy	anholonomy angle	Berry phase
curvature	Gaussian curvature	Berry curvature
topological number	Euler characteristic	Chern number

 $\chi = \frac{1}{2\pi} \int_{S} da \, G \qquad \qquad C = \frac{1}{2\pi} \int_{M} d\vec{a} \cdot \vec{F}$

陳省身 (1911-2004)

- C. Degenerate energy levels
- Non-degenerate level Wave function is a scalar

$$\left|\psi_{\vec{\lambda}(T)}\right\rangle = e^{i\gamma_{C}} e^{-i\int_{0}^{T} dt'\varepsilon(t')} \left|\psi_{\vec{\lambda}(0)}\right\rangle$$

Initial state and final state differ by a U(1) phase

• Degenerate levels (N-fold degeneracy) Wave function is a N-component spinor

Initial state and final state differ by a U(N) rotation. After diagonalization, you get N U(1) phases

For example, 2-fold degeneracy

$$\begin{cases} |\Psi_{n,1}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\boldsymbol{\lambda}(t')}} \\ \times (|n,1,\boldsymbol{\lambda}(t)\rangle\Gamma_{11}(t) + |n,2,\boldsymbol{\lambda}(t)\rangle\Gamma_{21}(t)), \\ |\Psi_{n,2}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\boldsymbol{\lambda}(t')}} \\ \times (|n,1,\boldsymbol{\lambda}(t)\rangle\Gamma_{12}(t) + |n,2,\boldsymbol{\lambda}(t)\rangle\Gamma_{22}(t)). \end{cases}$$

or
$$|\Psi_{n\beta}(t)\rangle = e^{-\frac{i}{\hbar}\int_{0}^{t} dt' \varepsilon_{n\lambda(t')}} \sum_{\alpha} |n\alpha\lambda(t)\rangle\Gamma_{\alpha\beta}(t).$$

Dynamical phase Berry rotation matrix
 $\langle \Psi_{n\alpha}|\Psi_{n\beta}\rangle = \delta_{\alpha\beta}$
 $\downarrow \Gamma^{\dagger}\Gamma = \Gamma\Gamma^{\dagger} = 1$ Unitary rotation, U(2) matrix

$$\begin{split} H|\Psi_{n\beta}(t)\rangle &= i\hbar\frac{\partial}{\partial t}|\Psi_{n\beta}(t)\rangle\\ &\Rightarrow \frac{d\Gamma_{\alpha\beta}}{dt} = -\sum_{\gamma} \langle n\alpha\lambda|\frac{\partial}{\partial t}|n\gamma\lambda\rangle\Gamma_{\gamma\beta}\\ &= i\sum_{\gamma}\dot{\lambda}(t)\cdot\mathbf{A}_{\alpha\gamma}^{(n)}(\lambda)\Gamma_{\gamma\beta},\\ \\ \text{where} \quad \mathbf{A}_{\alpha\beta}^{(n)}(\lambda) \equiv i\langle n\alpha\lambda|\frac{\partial}{\partial\lambda}|n\beta\lambda\rangle \quad \text{Berry connection (2x2 matrix)}\\ &\Gamma(t+dt) = \Gamma(t) + idt\dot{\lambda}(t)\cdot\vec{A}(t)\Gamma(t)\\ &\simeq e^{idt\dot{\lambda}(t)\cdot\vec{A}(t)}\Gamma(t)\\ &\Rightarrow \Gamma(t) = \cdots e^{id\lambda\cdot\vec{A}(\lambda_{1})}e^{id\lambda\cdot\vec{A}(\lambda_{0})}\Gamma(0)\\ &\equiv \underline{P}e^{i\int_{\lambda_{0}}^{\lambda(t)}d\lambda\cdot\vec{A}(\lambda)}, \ \Gamma(0) = 1,\\ &\text{path-ordering operator.} \end{split}$$

Aka Wilson loop

Berry curvature (Berry rotation per unit area)

non-commutative: Non-Abelian Berry curvature

A 3x3 antisymmetric matrix (with indices k,l) is equivalent to a vector (see latex note for details)

Alternative form: $\mathbf{F}_{k\ell} d\lambda_{1k} d\lambda_{2\ell} = \vec{\mathbf{F}} \cdot d^2 \mathbf{a}$,

where $\vec{\mathsf{F}} = \nabla_{\lambda} \times \vec{\mathsf{A}} - i\vec{\mathsf{A}} \times \vec{\mathsf{A}}.$

2x2 matrix for each vector component