I. Review of Berry phase

- A. Non-degenerate energy level
- B. Geometric analogy
- C. Degenerate energy levels

System with fast and slow variables

Example: a vibrating H⁺₂ molecule,

Instead of solving the full time-dependent

the Born-Oppenheimer approximation:

- (the kinetic energies from P_i are neglected)
-

$$
H(\vec{r}, \vec{p}; \vec{\lambda}) \left| n, \vec{\lambda} \right\rangle = \varepsilon_{n, \vec{\lambda}} \left| n, \vec{\lambda} \right\rangle
$$

"snapshot" solution (single-valued in λ)

Adiabatic evolution of a quantum system

$$
H_{\boldsymbol{\lambda}}|n,\boldsymbol{\lambda}\rangle=\varepsilon_{n\boldsymbol{\lambda}}|n,\boldsymbol{\lambda}\rangle
$$

$$
\begin{array}{l} \mbox{ystem} \\[1ex] H_{\pmb{\lambda}}|n,\pmb{\lambda}\rangle = \varepsilon_{n\pmb{\lambda}}|n,\pmb{\lambda}\rangle \\[1ex] \mbox{• After time } t \\[1ex] |\Psi_{n\pmb{\lambda}}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\pmb{\lambda}(t')} |n,\pmb{\lambda}(t)\rangle} \\[1ex] \mbox{dynamical phase} \end{array}
$$

there is no inter-level transition. (Quantum adiabatic theorem)

If the characteristic frequency of
Phases of the snapshot states at different λ **'s** motion $\Omega_0 \ll \Delta_0/\hbar$, then are independent and can be assigned arbitrarily **ystem**
 $H_{\pmb{\lambda}}|n,\pmb{\lambda}\rangle = \varepsilon_n\pmb{\lambda}|n,\pmb{\lambda}\rangle$

• After time t
 $|\Psi_{n\pmb{\lambda}}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_n\pmb{\lambda}(t')}|n,\pmb{\lambda}(t)\rangle$
 dynamical phase

• Phases of the snapshot states at different λ 's

are *independent* and $\begin{array}{l} \displaystyle H_{\bm \lambda}|n,\bm \lambda\rangle=\varepsilon_{n\bm \lambda}|n,\bm \lambda\rangle \end{array}$ • After time t
 $\displaystyle \ket{\Psi_{n\bm \lambda}(t)}=e^{-\frac{i}{\hbar}\int_{0}^{t}dt'\varepsilon_{n\bm \lambda(t')}}|n,\bm \lambda(t)\rangle$

dynamical phase

• Phases of the snapshot states at different λ' s

are *independent* and ca

$$
\left|n,\vec{\lambda}\right\rangle = e^{i\gamma_n(\vec{\lambda})}\left|n,\vec{\lambda}\right\rangle
$$

Do we need to worry about this phase?

No need! • Fock, Z. Phys 1928

• Fock, Z. Phys 1928
• Schiff, Quantum Mechanics (3rd ed.) p.290
 Pf : Consider the *n*-th level • Fock, Z. Phys 1928
• Schiff, *Quantum Mechanics* (3rd ed.) p.290
Pf : Consider the *n*-th level,

 Pf : Consider the *n*-th level,

 $H|\Psi_{n\vec{i}}(t)\rangle = i\hbar \frac{\partial}{\partial t} |\Psi_{n\vec{i}}(t)\rangle$ $\Psi_{n\vec{\lambda}}(t)\big\rangle = i\hbar \frac{\partial}{\partial t} \left|\Psi_{n\vec{\lambda}}(t)\right|$ ∂l $\overline{a}_{\vec{\lambda}}(t)\rangle = i\hbar \frac{1}{2} \Psi_{n\vec{\lambda}}(t)$ $\langle (t) \rangle = e^{i \gamma_n(\vec{\lambda})} e^{-i \int_0^t dt' \varepsilon_n(t')} \left| n, \vec{\lambda} \right>$ t \int_{a}^{b} (*λ*) \int_{0}^{a} \int_{0}^{a} \int_{0}^{b} \int_{0}^{a} n $\left\langle \Psi_{n\vec{\lambda}}(t)\right\rangle =e^{i\gamma_{n}(\vec{\lambda})}e^{-i\int_{0}^{t}dt'\varepsilon_{n}(t')}\left|n,\vec{\lambda}\right\rangle$ \vec{r} ck, Z. Phys 1928

iff, *Quantum Mechanics* (3rd ed.) p.290

Consider the *n*-th level,
 $H\left|n, \vec{\lambda}\right\rangle = \varepsilon_{n, \vec{\lambda}}\left|n, \vec{\lambda}\right\rangle$ snapshot

state
 $\exists x \in \mathbb{R}$
 $\forall x \in \vec{\lambda}$ $\Rightarrow \vec{F}(x^T \varepsilon_n(x)) = \vec{\lambda}$ snapshot state $\dot{\gamma}_n = i \langle n, \vec{\lambda} | \frac{\partial}{\partial \vec{\lambda}} | n, \vec{\lambda} \rangle \cdot \dot{\vec{\lambda}} \neq 0$ \mathcal{X}^{I} $=i\langle n,\vec{\lambda}|\frac{\partial}{\partial \vec{\lambda}}|n,\vec{\lambda}\rangle \cdot \dot{\vec{\lambda}} \neq 0$ ∂ \vec{a} $\frac{\partial}{\partial |n}\vec{a}$ $\dot{\gamma}_n = i \langle n, \lambda | \frac{\partial}{\partial \vec{\lambda}} \rangle$ $\equiv A_n(\lambda)$ $H\left|n,\vec{\lambda}\right\rangle = \varepsilon_{n,\vec{\lambda}}\left|n,\vec{\lambda}\right\rangle$ \vec{a} \vec{a}

 $\langle n, \vec{\lambda} \rangle = e^{i \phi_n(\vec{\lambda})} | n, \vec{\lambda} \rangle$ \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \vec{a} \vec{a} \vec{b} \vec{a} \vec{b} \vec{c} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \vec{b} \vec{c} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} $\vec{b$ ϕ_{n} λ $= A_n(\lambda) - \frac{\partial \theta}{\partial \lambda}$ ∂ $A_n'(\lambda) = A_n(\lambda) - \frac{\partial \varphi_n}{\partial \vec{\lambda}}$ Choose a $\phi(\lambda)$ such that, $\mathbf{A}_n'(\lambda)=0$, hence removes this extra phase. Redefine the phase, $\left| n,\lambda \right\rangle =e^{\iota \phi_{n}(\lambda)}\left| n,\lambda \right\rangle$ (ϕ_{n} is single-valued)

However, there is one problem:

 $\nabla_{\vec{\lambda}} \phi = \vec{A}(\vec{\lambda})$ does not always have a (global) well-defined solution!

Two possible cases:

M. Berry, 1984 : The parameter-dependent phase is NOT always removable!

For periodic motion with $\lambda(T)=\lambda(0)$, we have, in general

M. Berry, 1984 :
\nThe parameter-dependent phase is NOT always rem
\nFor periodic motion with λ(T)=λ(0), we have, in gene
\n
$$
\left|\psi_{\vec{\lambda}(T)}\right\rangle = e^{i\gamma_C}e^{-i\int_0^T dt'\varepsilon(t')} \left|\psi_{\vec{\lambda}(0)}\right\rangle \quad \text{Index } r
$$
\n• Berry phase (aka geometric phase)
\n
$$
\gamma_C = \oint_C \left|\vec{\lambda}\right| i \frac{\partial}{\partial \vec{\lambda}} \left|\vec{\lambda}\right\rangle \cdot d\vec{\lambda} \neq 0 \quad \text{Depends on the path C, indepe}
$$

$$
\gamma_C = \oint_C \left\langle \vec{\lambda} \middle| i \frac{\partial}{\partial \vec{\lambda}} \middle| \vec{\lambda} \right\rangle \cdot d\vec{\lambda} \neq 0 \qquad \text{p}
$$

Depends on the geometry of the \dot{y} path C, independent of the rate

M. Berry, 1984 :
\nThe parameter-dependent phase is NOT always removable.
\nFor periodic motion with λ(T)=λ(0), we have, in general
\n
$$
|\psi_{\lambda(T)}\rangle = e^{i\gamma_c}e^{-i\int_0^T dt'\epsilon(t')}|\psi_{\lambda(0)}\rangle
$$
 Index *n*
\n• Berry phase (aka geometric phase)
\n
$$
\gamma_c = \oint_c \left\langle \vec{\lambda} \middle| i \frac{\partial}{\partial \vec{\lambda}} \middle| \vec{\lambda} \right\rangle \cdot d\vec{\lambda} \neq 0
$$
Depends on the geometry of the
\n• Berry phase is path-dependent
\nif $\oint_c = \int_1^{\infty} + \int_2^{\infty} \neq 0$, then $\int_1^{\infty} - \int_{-2}^{\infty} \left(=\int_1^{\infty} + \int_2^{\infty}\right) \neq 0$
\nPhase difference
\n
\n**Phase difference**
\n**2**
\n**3**
\n**4**
\n**2**
\n**6**
\n**7**
\n**8**
\n**8**
\n**8**
\n**9**
\n**1**
\n**1**
\n**1**
\n**2**
\n**8**
\n**1**
\n**1**
\n**1**
\n**2**
\n**8**
\n**1**
\n**1**
\n**1**
\n**2**
\n**2**
\n**3**
\n**4**
\n**2**
\n**5**
\n**8**
\n**8**
\n**9**
\n**1**
\n**1**
\n**1**
\n**2**
\n**3**
\n**4**
\n**5**
\n**6**
\n**8**
\n**9**
\n**1**
\n**10**
\n**11**
\n**12**
\n**13**
\n**14**
\n**15**
\n**16**

Some terminology

• Berry connection (aka Berry potential)

$$
\vec{A}(\vec{\lambda}) \equiv i \left\langle \vec{\lambda} \, \middle| \, \nabla_{\lambda} \, \middle| \, \vec{\lambda} \right\rangle
$$

• Stokes theorem (3-dim here, can be higher)

$$
\gamma_C = \oint_C \vec{A} \cdot d\vec{\lambda} = \int_S \nabla_{\vec{\lambda}} \times \vec{A} \cdot d\vec{a}
$$

2
2
3
3
4
4
5
6
7
8
8
9
1
1
1
2
2
3
4
9
1
1
1
2
2
3
3
4
5
6
1
1
2
3
3
4
5
5
6
7
8
8
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

• Berry curvature (aka Berry field)

$$
\vec{F}(\vec{\lambda}) \equiv \nabla_{\lambda} \times \vec{A}(\vec{\lambda}) = i \left\langle \nabla_{\lambda} \psi_{\vec{\lambda}} \right| \times \left| \nabla_{\lambda} \psi_{\vec{\lambda}} \right\rangle
$$

For a small loop,

$$
\gamma_C = \int_S \vec{F} \cdot d\vec{a} \simeq \vec{F} \cdot d\vec{a}
$$

- Gauge transformation
	- $(\vec{\lambda})\big|_1$ e^i $\chi(\vec{\lambda})$ $\bar{\lambda}$ / \rightarrow e | ψ $\bar{\lambda}$ / $|\psi_{\vec{i}}\rangle \rightarrow e^{i\chi(\vec{\lambda})}|\psi_{\vec{i}}\rangle$ \rightarrow \vec{r} \cdot $|\psi_{\vec{\lambda}}\rangle \rightarrow e^{i\chi(\lambda)}|\psi_{\vec{\lambda}}\rangle$
	- $(\vec{\lambda}) \rightarrow \vec{\mathcal{A}}(\vec{\lambda})$ - $\vec{A}(\vec{\lambda}) \rightarrow \vec{A}(\vec{\lambda})$ λ $(\vec{\lambda}) \rightarrow \vec{A}(\vec{\lambda}) - \nabla_{\lambda} \chi$ $\rightarrow \vec{A}(\vec{\lambda})-\nabla_{\lambda}$ $\frac{7}{4}$ (3) $\frac{7}{4}$ (3) \bullet

•
$$
\vec{F}(\vec{\lambda}) \rightarrow \vec{F}(\vec{\lambda})
$$

•
$$
\gamma_c \rightarrow \gamma_c
$$

Redefine the phases of the snapshot states (χ is single-valued)

Berry curvature and Berry phase are not changed under the G.T.

Analogy with electromagnetism

A canonical example (we'll cite this result several times later)
A spin-1/2 particle in a *slowly changing B* field ²II cite this result several times later)

owly changing B field
 $H_{\bar{\lambda}=\bar{B}} = \mu_B \vec{B} \cdot \vec{\sigma}$

• Eingenvalues and eigenstates
 $\varepsilon_{\pm} = \pm \mu_B B$

A spin-1/2 particle in a slowly changing B field

• Real space

$$
H_{\vec{\lambda} = \vec{B}} = \mu_B \vec{B} \cdot \vec{\sigma}
$$

$$
\varepsilon_{\pm}=\pm \mu_B B
$$

$$
\hat{S} \quad \hat{C} \qquad |\hat{n}, +\rangle = \left(\begin{array}{c} \cos \frac{\theta}{2} \\ e^{i\phi} \sin \frac{\theta}{2} \end{array} \right), \ |\hat{n}, -\rangle = \left(\begin{array}{c} -e^{-i\phi} \sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} \end{array} \right).
$$

Level crossing at $B=0$ $\qquad \bullet$

• Different choices of phases (gauge choices)

B that $|\hat{n}, \pm\rangle$ have ϕ -ambiguity at $\theta = \pi$ (but not at $\theta =$
0), while $|\hat{n}, \pm\rangle'$ have ϕ -ambiguity at $\theta = 0$ (but not at $\theta = \pi$).

• Parameter space

• Berry connection
\n
$$
\frac{\partial}{\partial \mathbf{B}} = \frac{\partial}{\partial B} \hat{e}_r + \frac{1}{B} \frac{\partial}{\partial \theta} \hat{e}_{\theta} + \frac{1}{B \sin \theta} \frac{\partial}{\partial \phi} \hat{e}_{\phi}
$$
\n
$$
\mathbf{A}_{+}(\mathbf{B}) = i \langle \mathbf{B}, + | \frac{\partial}{\partial \mathbf{B}} | \mathbf{B}, + \rangle
$$
\n
$$
= -\frac{1}{2B} \frac{1 - \cos \theta}{\sin \theta} \hat{e}_{\phi}.
$$
\n• vector potential of a monopole
\n
$$
\mathbf{A}_{-}(\mathbf{B}) = \frac{1}{2B} \frac{1 - \cos \theta}{\sin \theta} \hat{e}_{\phi}
$$
\nBoth $\mathbf{A}_{\pm}(\mathbf{B})$ are singular along $\theta = \pi$.
\n(relates to the ϕ -ambiguity)
\n• Berry curvature
\n
$$
\mathbf{F}_{\pm}(\mathbf{B}) = \nabla_{\mathbf{B}} \times \mathbf{A}_{\pm}(\mathbf{B}) = \mp \frac{1}{2} \frac{\hat{B}}{B^2}
$$

~ vector potential of a monopole

$$
\text{ilary, } \quad \mathbf{A}_{-}(\mathbf{B}) = \frac{1}{2B} \frac{1 - \cos \theta}{\sin \theta} \hat{e}_{\phi}
$$

(relates to the ϕ -ambiguity)

Similarly,
$$
\mathbf{A}_{-}(\mathbf{B}) = \frac{1}{2B} \frac{1 - \cos \theta}{\sin \theta} \hat{e}_{\phi}
$$

\nBoth $\mathbf{A}_{\pm}(\mathbf{B})$ are singular along $\theta = \pi$.
\n(relates to the ϕ -ambiguity)
\n• **Berry curvature**
\n $\mathbf{F}_{\pm}(\mathbf{B}) = \nabla_{\mathbf{B}} \times \mathbf{A}_{\pm}(\mathbf{B}) = \mp \frac{1}{2} \frac{\hat{B}}{B^2}$
\n \sim magnetic field of a monopole
\nPoint of level crossing is the source of Berry curvature

~ magnetic field of a monopole

\n- Berry phase
\n- $$
\gamma_{\pm}(C) = \mp \frac{1}{2} \Omega(C)
$$
\n- $|\hat{n}, \pm \rangle' =$ spin \times solid angle
\n- Berry index (topological charge)
\n- $1 \quad \text{(equation)}$
\n

(topological charge)

$$
\frac{1}{2\pi}\int_{S^2_B}d^2{\bf a}\cdot{\bf F}_\pm({\bf B})=\mp 1
$$

• **Gauge transformation**
\n
$$
|\hat{n}, \pm\rangle' = e^{\mp i\phi} |\hat{n}, \pm\rangle
$$
\n
$$
\mathbf{A}'_{\pm}(\mathbf{B}) = \mathbf{A}_{\pm}(\mathbf{B}) \pm \frac{\partial \phi}{\partial \mathbf{B}}
$$
\n
$$
= \mathbf{A}_{\pm}(\mathbf{B}) \pm \frac{1}{B \sin \theta} \hat{e}_{\phi}
$$
\n
$$
= \pm \frac{1}{2B} \frac{1 + \cos \theta}{\sin \theta} \hat{e}_{\phi}
$$

Both $\mathbf{A}'_{\pm}(\mathbf{B})$ are singular along $\theta = 0$.

Experiments : Bitter and Dubbers , PRL 1987
Neutrons fly through a helical magnetic field Neutrons fly through a helical magnetic field

Berry phase ~ Anholonomy angle

Fiber bundle = $U(1)$ phase x λ -space

Fig. from Fiber bundles and quantum theory, by Bernstein and Phillips, Sci. Am. 1981

Revisiting parallel transport (PT)

• PT along a geodesic curve • PT along a general curve

 α_A = ?

The earlier definition of PT cannot be right (e.g., transporting a vector along a general curve on a flat surface).

New definition of PT:

v does not twist around the local vertical axis (normal vector $\mathbf n$) as we move along a curve C.

A moving frame on a curved surface

Parallel transport condition of a

$$
\tilde{\mathbf{e}}_1 = \boldsymbol{\omega} \times \tilde{\mathbf{e}}_1
$$
\n
$$
\boldsymbol{\omega} \cdot \mathbf{n} = \boldsymbol{\omega} \cdot \tilde{\mathbf{e}}_1 \times \tilde{\mathbf{e}}_2
$$
\n
$$
= \boldsymbol{\omega} \times \tilde{\mathbf{e}}_1 \cdot \tilde{\mathbf{e}}_2 = \dot{\tilde{\mathbf{e}}}_1 \cdot \tilde{\mathbf{e}}_2 = 0
$$
\n
$$
\text{PT condition}
$$

Define complex vector

$$
\psi = \frac{1}{\sqrt{2}} \left(\tilde{\mathbf{e}}_1 + i \tilde{\mathbf{e}}_{2} \right)
$$

$$
\longrightarrow \text{ Im}\left(\psi^*\cdot\dot{\psi}\right)=0, \text{ or }\left[i\psi^*\cdot\dot{\psi}=0.\right]
$$

Alternative form of the PT condition

moving triad $(n, \tilde{e}_1, \tilde{e}_2)$:

No rotation around *n*,

$$
\boldsymbol{\omega}\cdot\mathbf{n}=0
$$

 Angular velocity

PT frame vs fixed frame:

e vs fixed frame:
fixed triad (\mathbf{n}, e_1, e_2)
moving triad $(\mathbf{n}, \tilde{e}_1, \tilde{e}_2)$ moving triad $(n, \tilde{e}_1, \tilde{e}_2)$ define $\phi = \frac{1}{\sqrt{2}} (\mathbf{e}_1 + i \mathbf{e}_2)$ $\psi = \frac{1}{\sqrt{2}} (\tilde{\mathbf{e}}_1 + i \tilde{\mathbf{e}}_{2\perp})$ then $\psi(\mathbf{r}) = \phi(\mathbf{r})e^{i\alpha(\mathbf{r})}$ $\rightarrow \psi^* \cdot d\psi = \phi^* \cdot d\phi + id\alpha$ $\rightarrow \alpha(C) = i \oint_C \phi^* \cdot \frac{d\phi}{d\mathbf{r}} \cdot d\mathbf{r}.$ Fixed states, single-valued **A** singl Analogy: $\gamma(C) =$ $\vec{\lambda}$ $|V \lambda \varphi_{\lambda}^{2}| \cdot a \lambda$ \mathcal{C} $\mathcal{$ Snapshot states

PT condition

versus $i\psi^*\cdot\dot{\psi}=0$

PT states, not single-valued

$$
i\left\langle \psi_{\vec{\lambda}} \left| \nabla_{\lambda} \psi_{\vec{\lambda}} \right. \right\rangle = 0
$$
PT states

Analogy

 $\chi = \frac{1}{2\pi} \int_S da G$ $C = \frac{1}{2\pi} \int_M d\vec{a} \cdot \vec{F}$

陳省身 (1911-2004)

- C. Degenerate energy levels
- Non-degenerate level Wave function is a scalar

$$
\left|\psi_{\vec{\lambda}(T)}\right\rangle = e^{i\gamma_C} e^{-i\int_0^T dt' \varepsilon(t')} \left|\psi_{\vec{\lambda}(0)}\right\rangle
$$

Initial state and final state differ by a $U(1)$ phase

• Degenerate levels (N-fold degeneracy) Wave function is a N-component spinor

Initial state and final state differ by a U(N) rotation. After diagonalization, you get N U(1) phases

For example, 2-fold degeneracy

$$
\begin{cases}\n|\Psi_{n,1}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\lambda(t')}} \\
\times (|n,1,\lambda(t)\rangle \Gamma_{11}(t) + |n,2,\lambda(t)\rangle \Gamma_{21}(t)), \\
|\Psi_{n,2}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\lambda(t')}} \\
\times (|n,1,\lambda(t)\rangle \Gamma_{12}(t) + |n,2,\lambda(t)\rangle \Gamma_{22}(t)).\n\end{cases}
$$

or
$$
|\Psi_{n\beta}(t)\rangle = e^{-\frac{i}{\hbar}\int_0^t dt' \varepsilon_{n\lambda(t')}} \sum_{\alpha} |n\alpha\lambda(t)\rangle \Gamma_{\alpha\beta}(t).
$$

Dynamical phase
$$
\frac{\partial}{\partial t} \sum_{\alpha} |\nabla_{\alpha\beta}(t)|^2
$$

Every rotation matrix
$$
\langle \Psi_{n\alpha} | \Psi_{n\beta} \rangle = \delta_{\alpha\beta}
$$

$$
\Gamma^{\dagger} \Gamma = \Gamma \Gamma^{\dagger} = 1
$$
 Unitary rotation, U(2) matrix

$$
H|\Psi_{n\beta}(t)\rangle = i\hbar \frac{\partial}{\partial t} |\Psi_{n\beta}(t)\rangle
$$

\n
$$
\frac{d\Gamma_{\alpha\beta}}{dt} = -\sum_{\gamma} \langle n\alpha \lambda | \frac{\partial}{\partial t} |n\gamma \lambda \rangle \Gamma_{\gamma\beta}
$$

\n
$$
= i \sum_{\gamma} \dot{\lambda}(t) \cdot \mathbf{A}^{(n)}_{\alpha\gamma}(\lambda) \Gamma_{\gamma\beta},
$$

\nwhere
$$
\mathbf{A}^{(n)}_{\alpha\beta}(\lambda) \equiv i \langle n\alpha \lambda | \frac{\partial}{\partial \lambda} |n\beta \lambda \rangle
$$
 Berry connection (2x2 matrix)
\n
$$
\Gamma(t + dt) = \Gamma(t) + i dt \dot{\lambda}(t) \cdot \vec{A}(t) \Gamma(t)
$$

\n
$$
\simeq e^{i dt \dot{\lambda}(t) \cdot \vec{A}(t)} \Gamma(t)
$$

\n
$$
\Rightarrow \Gamma(t) = \cdots e^{i d\lambda \cdot \vec{A}(\lambda_1)} e^{i d\lambda \cdot \vec{A}(\lambda_0)} \Gamma(0)
$$

\n
$$
\equiv \underline{P} e^{i \int_{\lambda_0}^{\lambda_0} d\lambda \cdot \vec{A}(\lambda)} , \Gamma(0) = 1,
$$

\npath-ordering operator.

Aka Wilson loop

Berry curvature (Berry rotation per unit area)

non-commutative: Non-Abelian Berry curvature

A 3x3 antisymmetric matrix (with indices k,l) is equivalent to a vector (see latex note for details)

Alternative form: $F_{k\ell}d\lambda_{1k}d\lambda_{2\ell} = \vec{F} \cdot d^2\mathbf{a}$,

where $\vec{\mathsf F}=\nabla_{\boldsymbol{\lambda}}\times\vec{\mathsf A}-i\vec{\mathsf A}\times\vec{\mathsf A}.$ 2x2 matrix for each vector component