I. Review of Bloch theory

- A. Translation symmetry
- B. Time reversal symmetry
	- 1. Spinless state
	- 2. Spin- $1/2$ state
	- 3. Kramer degeneracy

I. REVIEW OF BLOCH THEORY

A. Translation symmetry

Lattice Hamiltonian

$$
H = \frac{p^2}{2m} + V_L(\mathbf{r}), \text{ with } V_L(\mathbf{r} + \mathbf{R}) = V_L(\mathbf{r})
$$

Lattice translation operator

$$
T_{\mathbf{R}}\psi(\mathbf{r}) = \psi(\mathbf{r} + \mathbf{R})
$$

$$
T_{\mathbf{R}}H(\mathbf{r})\psi(\mathbf{r}) = H(\mathbf{r})T_{\mathbf{R}}\psi(\mathbf{r})
$$

 \rightarrow Simultaneous eigenstates (Bloch states)

$$
\left\{\n\begin{array}{rcl}\nH\psi & = & \varepsilon\psi, & c_{\mathsf{R}}\mathsf{I}=\mathsf{1} \\
T_{\mathsf{R}}\psi & = & c_{\mathsf{R}}\psi,\n\end{array}\n\right.
$$

 $T_{\mathbf{R}}T_{\mathbf{R}'}=T_{\mathbf{R}'}T_{\mathbf{R}}=T_{\mathbf{R}+\mathbf{R}'}$

$$
\Rightarrow c_{\mathbf{R}}c_{\mathbf{R'}} = c_{\mathbf{R'}}c_{\mathbf{R}} = c_{\mathbf{R} + \mathbf{R'}}
$$

 $n_{\rm m}$

$$
c_{\mathbf{R}} = e^{i\mathbf{k}\cdot\mathbf{R}}
$$

$$
H\psi_{\varepsilon\mathbf{k}} = \varepsilon\psi_{\varepsilon\mathbf{k}},
$$

$$
T_{\mathbf{R}}\psi_{\varepsilon\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{\varepsilon\mathbf{k}}.
$$

write
$$
\psi_{\varepsilon \mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_{\varepsilon \mathbf{k}}(\mathbf{r})
$$

then $u_{\varepsilon_{\mathbf{k}}}(\mathbf{r}+\mathbf{R})=u_{\varepsilon_{\mathbf{k}}}(\mathbf{r})$ Cell-periodic function

- The Bloch wave differs from the plane wave of free electrons only by a periodic modulation.
- $u_{\varepsilon k}(r)$ contains, in one unit cell, all info of $\psi_{\alpha}({\bf r})$

Schrodinger eq. for ${\sf u}_{\varepsilon\boldsymbol{k}}(\boldsymbol{r})$

Schrodinger eq. for
$$
u_{\varepsilon k}(r)
$$

\n
$$
\tilde{H}_{k}(r) u_{\varepsilon k} = \varepsilon u_{\varepsilon k}
$$
\n
$$
\tilde{H}_{k}(r) \equiv e^{-i\mathbf{k} \cdot \mathbf{r}} H(r) e^{i\mathbf{k} \cdot \mathbf{r}}
$$
\n
$$
= \frac{1}{2m} (\mathbf{p} + \hbar \mathbf{k})^2 + V_L(\mathbf{r})
$$
\n
$$
u_{\varepsilon k}(r + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi_{n\mathbf{k} + \mathbf{G}}(r + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi_{n\mathbf{k} + \mathbf{G}}(r + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}}
$$
\nSolve diff eq with with PBC
\n $u_{\varepsilon k}(r + \mathbf{R}) = u_{\varepsilon k}(r)$
\nSince the two Bloch states ψ_n same Schrödinger equation (w) same boundary condition (Eq. can differ (for non-degenerate s)

$$
u_{\varepsilon \mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{\varepsilon \mathbf{k}}(\mathbf{r})
$$

► Discrete energy levels

\n
$$
\tilde{H}_{\mathbf{k}}(\mathbf{r})u_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}u_{n\mathbf{k}}
$$
\nBand index *n*,

\nBlock momentum *k*

$$
\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi_{n\mathbf{k}}(\mathbf{r})
$$

$$
e^{i\mathbf{G} \cdot \mathbf{R}} = 1
$$

$$
\psi_{n\mathbf{k} + \mathbf{G}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi_{n\mathbf{k} + \mathbf{G}}(\mathbf{r})
$$

Periodic gauge (choose $\phi(k)=0$)

$$
\psi_{n\mathbf{k}+\mathbf{G}} = \psi_{n\mathbf{k}}
$$

Not applicable to topological state, e.g., quantum Hall state (this is called topological obstruction)

Ref: Sakurai, Modern quantum mechanics
 B. Time reversal symmetry Wigner's theorem
 $|\alpha\rangle \rightarrow |\tilde{\alpha}\rangle = \Theta |\alpha\rangle$ An operator of transformation to

$$
U(t)\Theta|\alpha\rangle = \Theta U(-t)|\alpha\rangle
$$

 $U(\delta t) \simeq 1 - iH\delta t/\hbar$

 \rightarrow $-iH\Theta = \Theta i\dot{H}$

Wigner's theorem

An operator of transformation that preserves $\langle \alpha | \alpha \rangle$ can only be either unitary or anti-unitary:

> $\langle U\psi_1|U\psi_2\rangle = \langle \psi_1|\psi_2\rangle$ or $\langle U^A \psi_1 | U^A \psi_2 \rangle = \langle \psi_2 | \psi_1 \rangle$ $A_1|_{L_2} = \langle 1|_{L_2} |1|_{L_2}$ $21 - (\psi_2|\psi_1)$

If Θ is unitary, then $-H\Theta = \Theta H$

 \rightarrow energy is bottomless

So Θ has to be anti-unitary,

$$
\Rightarrow \quad \Theta = UK \quad Ki = -iK
$$

$$
\rightarrow \quad H\Theta = \Theta H \quad \text{but} \quad U(t)\Theta \neq \Theta U(t)
$$

No conserved quantity from Θ

For states under TR, one has

$$
\langle \tilde \beta | \tilde \alpha \rangle = \langle \alpha | \beta \rangle, \ \ \text{or} \ \ \langle \beta | \alpha \rangle^*.
$$

Pf:

$$
\langle \tilde{\beta} | \tilde{\alpha} \rangle = \langle UK\beta | UK\alpha \rangle
$$

= $\langle K\beta | K\alpha \rangle$
= $\langle \alpha | \beta \rangle$. QED

For the matrix elements of an operator O , one has

$$
\langle \tilde{\beta} | O | \tilde{\alpha} \rangle = \langle \alpha | \Theta^{-1} O^{\dagger} \Theta | \beta \rangle.
$$

(for a proof, see my latex note)

1. Spinless state Θ =K

$$
\psi(\mathbf{r},t) \stackrel{TR}{\longrightarrow} \Theta \psi(\mathbf{r},t) = \psi^*(\mathbf{r},t)
$$

• In a magnetic field

$$
H = \frac{(\mathbf{p} - q\mathbf{A})^2}{2m} + V_L(\mathbf{r})
$$

$$
K^{-1}HK = \frac{(\mathbf{p} + q\mathbf{A})^2}{2m} + V_L(\mathbf{r}) \neq H
$$

Magnetic field breaks TRS

• Bloch state under TR

$$
\psi_{n\mathbf{k}}(\mathbf{r}) \stackrel{TR}{\longrightarrow} \Theta \psi_{n\mathbf{k}}(\mathbf{r}) = \psi_{n\mathbf{k}}^*(\mathbf{r}).
$$

2. Spin- $1/2$ state

Pauli matrices

$$
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

$$
\Theta = -i\sigma_y K = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) K
$$

$$
\begin{array}{rcl}\n\text{or} & = e^{-is_y \pi/\hbar} K \\
\hline\n\text{Rotates spin-up} & \text{fo} \\
\text{to spin-down} & \text{c} \\
\end{array}
$$

In general, for half-integer spin,

$$
\Theta = e^{-iJ_y \pi/\hbar} K
$$

$$
\Rightarrow \qquad \Theta^2 = -1
$$

for integer spin, $\Theta^2 = +1$

• Spinor Bloch state under TR

$$
\left(\begin{array}{c} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{array}\right) \stackrel{TR}{\longrightarrow} \Theta\left(\begin{array}{c} \varphi_{\mathbf{k}\uparrow} \\ \varphi_{\mathbf{k}\downarrow} \end{array}\right) = \left(\begin{array}{c} -\varphi_{\mathbf{k}\downarrow}^* \\ +\varphi_{\mathbf{k}\uparrow}^* \end{array}\right)
$$

3. Kramer degeneracy

For a system with TRS and *half-integer* spin, if ψ is an energy eigenstate, then $\Theta \psi$ is also an energy eigenstate. Furthermore, these two states are degenerate and orthogonal to each other.

Pf. Since $H\Theta = \Theta H$, so if ψ is an eigenstate with energy ε , $H\psi = \varepsilon\psi$, then

$$
H\Theta\psi = \Theta H\psi = \varepsilon\Theta\psi.
$$
 (1.58)

That is, $\Theta \psi$ is also an eigenstate with energy ε . Furthermore, using the identity $\langle \beta | \alpha \rangle = \langle \tilde{\alpha} | \beta \rangle$, one has

$$
\langle \psi | \Theta \psi \rangle = \langle \Theta (\Theta \psi) | \Theta \psi \rangle \tag{1.59}
$$

$$
= -\langle \psi | \Theta \psi \rangle, \tag{1.60}
$$

in which $\Theta^2 = -1$ has been used to get the second equation. Therefore, $\langle \psi | \Theta \psi \rangle = 0$. QED.

[Spin-Orbit Coupling (SOC) included]

- With both TRS and SIS
- w/ SIS $\varepsilon_{nks} = \varepsilon_{n-k-s} = \varepsilon_{nks}$ ε (global 2-fold degeneracy) ↓ ↑ Γ_{01} $\begin{array}{|c|c|c|c|}\n\hline\n\text{C}_{11} & \text{C}_{12} & \text{C}_{13} & \text{C}_{14} & \text{C}_{15} & \text{C}_{16} & \text{C}_{17} & \text{C}_{18} & \text{C}_{19} & \text{C}_{19} & \text{C}_{19} & \text{C}_{10} & \text{C}_{10} & \text{C}_{11} & \text{C}_{12} & \text{C}_{13} & \text{C}_{17} & \text{C}_{18} & \text{C}_{19} & \text{C}_{19} & \text{C}_{10} & \text$ • With TRS, without SIS $\varepsilon_{n-\mathbf{k}s} \neq \varepsilon_{n\mathbf{k}s}$ k Γ_{00} Γ_{10} Γ Except at w/o SIS ϵ time-reversal-invariant momentum "↑" (TRIM) $k = -k + G$ "↓" At TRIM k Level crossing at $\varepsilon_{n\mathbf{k}s}=\varepsilon_{n-\mathbf{k}-s}=\varepsilon_{n,-\mathbf{k}+\mathbf{G},-s}=\varepsilon_{n\mathbf{k}-s}$ **TRIM**