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I. ELECTROMAGNETIC RESPONSE OF WEYL
SEMIMETAL

The Weyl nodes in a solid lead to several interesting
effects. One is the anomalous Hall effect mentioned in
previous chapter. The others are, for exmaple, chiral
anomaly, and chiral magnetic effect. Before introducing
these two effects, let’s first study the Landau levels in a
Weyl semimetal.

A. Landau levels in magnetic field

Consider a Weyl node with helicity χ,

H = χvσ · p. (1.1)

In the presence of a magnetic field B = Bẑ, the Hamil-
tonian becomes (Zyuzin and Burkov, 2012),

H = χv(σxπx + σyπy) + χvσzpz, (1.2)

where π = ℏ
i∇+ eA, and

[πx, πy] =
ℏeB
i

. (1.3)

The state along z-direction can be just a plane wave eikzz.
Introduce the creation and annihilation operators,{

a = 1√
2ℏeB (πx − iπy)

a† = 1√
2ℏeB (πx + iπy)

, (1.4)
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FIG. 1 For Weyl nodes with opposite helicities, the 0-th Lan-
dau levels slant toward opposite directions. The figure is from
Hosur and Qi, 2013

then

[a, a†] = 1. (1.5)

The Hamiltonian can be re-written as,

H = χℏω(σ+a+ σ−a
†) + χvσzℏkz (1.6)

= χ

(
vℏkz ℏωa
ℏωa† −vℏkz

)
, (1.7)

where ℏω ≡ v
√
2ℏeB, and σ± = (σx ± iσy)/2.

We now solve

HΨn = εnΨn, (1.8)

with Ψn = un

(
1
0

)
|n− 1⟩+ vn

(
0
1

)
|n⟩, (1.9)

and a|n⟩ =
√
n|n− 1⟩, a†|n⟩ =

√
n+ 1|n+ 1⟩. Then, for

n = 0, one has

εχ0 = χvℏkz. (1.10)

For n ≥ 1, one has{
vℏkzun + ℏω

√
nvn = χεnun,

ℏω
√
nun − vℏkzvn = χεnvn.

(1.11)

To have non-trivial solutions, one needs

det

(
vℏkz − χεn ℏω

√
n

ℏω
√
n −vℏkz − χεn

)
= 0. (1.12)

This gives

εχn± = ±χℏω
√

n+ (vkz/ω)2, n ≥ 1. (1.13)

The energy dispersion of LLs along kz (the direction
of B) are shown in Fig. 1. Notice that for Weyl nodes
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with opposite helicities, the 0-th LLs slant toward op-
posite directions (along the direction of B), parallel or
anti-parallel to the magnetic field. There is no energy
dispersion within the plane perpendicular to the magnetic
field.

B. Weyl orbit

In previous Chapter, we studied the Fermi arc from
the surface state. When coupled with the chiral LL in
Eq. (1.10), they could form a continuous path of trans-
port (Potter and Lee, 2011). Suppose there is a slab of
Weyl semimetal with thickness L. The slab needs to be
thin, so that the phase of an electron can remain coher-
ent during the transport. However, it cannot be too thin,
to avoid the coupling between the surface states from
two sides. For simplicity, suppose the chemical potential
equals the energy of the Weyl node.

Apply a perpendicular magnetic field Bŷ to the slab,
as shown in Fig. 2. An electron on the top Fermi arc
has group velocity v perpendicular to the arc. Because
of the Lorentz force, the electron would move along the
Fermi arc and reach a Weyl node. Beyond the adiabatic
approximation, the surface state and the bulk state near
the Weyl node could couple with each other. Thus the
low-energy electron could hop to the chiral LL. Since the
chiral LL has energy dispersion along the direction of
B, ε±0 = ±ℏvky, the electron would move down the to
the bottom surface and hop on to the Fermi arc there.
The Lorentz force drives the electron to the other Weyl
node and the electron finally comes back up to complete
a cycle. We will call such an orbit a Weyl orbit.

The energy quantum associated with an orbit with pe-
riod T is h/T . Thus the Weyl orbit has the discrete
energy spectrum,

εn = (n+ δ)
h

T
, n = 0, 1, 2, · · · (1.14)

where 0 ≥ δ < 1, and the period T = 2tarc+2tbulk. From
the semiclassical equation of motion,

ℏk̇ = −ev ×B, (1.15)

we have

ℏkA = evBtarc, (1.16)

where kA is the length of the Fermi arc, and v is the
speed in Eq. (1.1).

On the other hand, tbulk = L
v , v is again the velocity

in Eq. (1.1). Therefore,

εn =
hv

2

n+ δ

L+ kAλ2
B

, (1.17)

where λB ≡
√

ℏ/eB is the magnetic length. Note that
the energy spectrum would depend on the thickness L.

FIG. 2 Under a magnetic field, an electron slides along the
Fermi arc on top, merge with the chiral LL of the bulk state
at a Weyl point, then moves down, slides along the Fermi arc
on bottom, and moves up to complete a cycle. Fig. from
Potter et al., 2014.

Similar to the analysis of the de Hass-van Alphen ef-
fect. The discrete energy levels would lead to a periodic
variation of the density of states (DOS). When we fix µ
but change B, the DOS would reach a local maximum
whenever an energy level coincides with µ. As a result,
in the plot of the DOS versus 1/B, there is a period of
oscillation,

∆

(
1

B

)
=

πev

µkA
. (1.18)

Such an oscillation would reveal itself in various physical
properties. For a review, see Zhang et al., 2021.

C. Chiral anomaly

Consider a pair of Weyl nodes separated in momentum
space (see Fig. 3(a)). We first apply a magnetic field,
preferably along the line connecting the two nodes. Then,
apply an additional electric field to push the electrons. If
E ⊥ B, then the electrons won’t move, since the LLs do
not disperse along a direction perpendicular to B. That
is, only the component E∥ parallel to B could transport
the electrons.
The electrons in the kz-states of the 0-th LL slide along

the z-direction with a rate (see Fig. 3(b)),

dQz
χ

dt
= (−e)χ

∆kz

2π/Lz

∆t
(1.19)

= −eχ
k̇z

2π/Lz
, ℏk̇z = −eEz (1.20)

= e2χ
E∥Lz

h
. (1.21)

Furthermore, each LL has a huge degeneracy (see Chap 9
of Kittel, 2005),

D =
ϕtot

ϕ0
=

AsampB

h/e
, (1.22)

which is the ratio between total magnetic flux (through
the sample) and flux quantum ϕ0 = h/e. Asamp is the
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FIG. 3 (a) Applying a pair of electric and magnetic fields
along the two Weyl nodes. (b) The magnetic field generates
the chiral 0-th LLs in momentum space. The electric field
pumps electrons from one node to another.

projected area of the sample perpendicular to B. There-
fore, the total charges transported via the 0-th LL are,

dQ3D
χ

dt
=

AB

h/e

dQz
χ

dt
(1.23)

= χ
e3

h2
ALzBE∥. (1.24)

For the chiral charge density, one has (Hosur and Qi,
2013; Nielsen and Ninomiya, 1983),

∂ρχ
∂t

= χ
e3

h2
E ·B. (1.25)

It is possible to get this result using a semiclassical anal-
ysis without discrete Landau levels (Stephanov and Yin,
2012). See Sec. I.F.4.

This is essentially the same as the equation for the chi-
ral anomaly in particle physics (Adler, Bell, and Jackiw,
1969),

∂µJ
µ
5 = − e3

h2

1

4
εµνρλFµνFρλ, (1.26)

where J5
µ is the chiral current density, and J0

5 = ρ+−ρ−.
Note that in the context of particle physics, since there
is no lattice in vacuum, there is no node doubling. Also,
the Dirac sea of vacuum is not bounded from below, so
the chiral charges are supplied from an infinite reservoir,
not from the other node (which does not exist).

D. Chiral magnetic effect

Suppose that under a pair of E,B fields, the system
is maintained in a steady state with different chemical
potentials near the two nodes (see Fig. 4). Assume µ+ >
µ−, and an electric field moves electron charges Q from
right to left. The displacement of charges costs an energy,

dE =
Q

(−e)
(µ+ − µ−) > 0. (1.27)

m-

m+

FIG. 4 In a non-equilibrium state, the chemical potentials
near two nodes are different.

To balance the energy, the rate of work (per unit volume)
done by the applied electric field should be

J ·E =
dE/V

dt
=

1

(−e)

∂ρ

∂t
(µ+ − µ−) (1.28)

= −∆µ
e2

h2
E ·B, (1.29)

where ∆µ ≡ µ+ − µ−.

Choose E ∥ B, and let E → 0, then one seems to have,

J = −∆µ
e2

h2
B. (1.30)

This is called the chiral magnetic effect (CME).
We will justify this using a semiclassical approach in
Sec. I.F.3. The current vanishes when ∆µ = 0, so a
non-equilibrium state is required. Suppose B = 0.1 T,
and ∆µ = 0.01 meV, then the CME current J is about
0.01 (A/mm2). For a review of the CME, see Kharzeev
and Liao, 2021.

Some remarks on the symmetries of the Hall effect and
the chiral magnetic effect. From the symmetries of J,
E, and B, we can infer the symmetries of the transport
coefficients:

Jy = σHEx , Jz = αBBz

SI − + − − − +

TR − − + − + −

The table above shows the change of signs of J, E, and B
under SI and TR. It follows that the Hall conductivity σH

is even under SI, and odd under TR. The same symmetry
holds also for longitudinal conductivity σL.

The Hall current is dissipationless, JH ·E = 0. There-
fore, in order for a system to have a non-zero σH , TRS
needs be broken by applying a magnetic field or hav-
ing magnetic materials. Note that for the longitudinal
transport, the generation of the Joul heat, JL ·E, would
naturally break the TRS.

On the other hand, the CME coefficient αB needs to
be odd under SI, and even under TR. That is, the CME
requires the breaking of SIS. This can be provided by the
unbalanced chemical potentials near two Weyl nodes.
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E. Negative magnetoresistance

Since a magnetic field tends to restrict the motion of
electrons, the magnetoresistance (MR) is usually posi-
tive. That is, the resistance increases with the magnetic
field. An exception is the disordered medium with weak
localization. In this case, the localization is due to the
phase coherence of electrons. A magnetic field breaks the
phase coherence and delocalizes the electrons.

In Weyl semimetal, the charge pumping due to the
chiral anomaly also would result in negative magnetore-
sistance. This is explained as follows. After allowing
for the relaxation due to inter-node scatterings, the rate
equation for chiral charges becomes,

∂ρχ
∂t

= χ
e3

h2
E ·B− ρχ

τv
, (1.31)

where τv is the inter-node scattering time. In steady
state, ∂ρχ/∂t = 0, and one has

ρ± = ± e3

h2
E ·Bτv (1.32)

→ ∆µ ∝ E ·Bτv. (1.33)

Because of the chiral magnetic effect, a non-zero chiral
chemical potential leads to

J = −∆µ
e2

h2
B (1.34)

∝ (E ·B)Bτv. (1.35)

When E ∥ B, the current, and thus the longitudinal con-
ductivity, has a part proportional to B2. That is, we’ll
have a negative MR.

Furthermore, because of the E ·B factor, when E ro-
tates away from B, the current should reduce with the
angle. Such a locking of the maximum current to the
direction of the magnetic field is a signature of the chiral
anomaly in Weyl semimetals (Xiong et al., 2015).

F. Semiclassical analysis

We now study the transport in Weyl semimetals using
a semiclassical approach. Not only the chiral magnetic
effect, but also the chiral anomaly can be understood
from such an approach.

1. Equation of motion

The semiclassical equations of motion for Bloch elec-
tron is valid under the one-band approximation –
when interband transition can be ignored. For a non-
degenerate Bloch band-n, we have (Xiao et al., 2010),

ṙ =
∂ε̃nk
ℏ∂k

− k̇×Ωnk, (1.36)

ℏk̇ = −eE− eṙ×B, (1.37)

r

k

∆V(t)

∆V(t+dt)

FIG. 5 Evolution of a volume element in phase space.

in which

ε̃nk ≡ εnk −mnk ·B (1.38)

is the energy of a Bloch wavepacket shifted by magnetic
field. The electric and magnetic fields are allowed to
vary slowly in space and time (compared to the lattice
constant and the frequency εg/ℏ), but in the following
discussion they are assumed to be static and uniform.
The Berry curvature is,

Ωnk = i⟨∂unk

∂k
| × |∂unk

∂k
⟩, (1.39)

and the magnetic moment of a Bloch electron is (Hk ≡
e−ik·rHeik·r),

mnk = − e

2ℏ
i⟨∂unk

∂k
| × (Hk − εnk)|

∂unk

∂k
⟩. (1.40)

Berry curvature Ωnk, magnetic moment mnk, together
with band energy εnk, are three fundamental properties
of Bloch states.
Combining Eqs. (1.36) and (1.37), one can get

Dnṙ = vn +

Hall effect︷ ︸︸ ︷
e

ℏ
E×Ωn +

CME︷ ︸︸ ︷
e

ℏ
(vn ·Ωn)B, (1.41)

Dnℏk̇ = −eE− evn ×B− e2(E ·B)Ωn, (1.42)

where vn = ∂εnk

ℏ∂k , and

Dnk ≡ 1 +
e

ℏ
B ·Ωnk. (1.43)

The second and the third terms in Eq. (1.41) are re-
sponsible for the Berry-curvature-related Hall effect and
chiral magnetic effect respectively. In Eq. (1.42), in addi-
tion to the Lorentz force terms, the third term has some-
thing to do with the chiral anomaly. More details below.

2. Density of states in phase space

Consider a volume element in phase space moving
along a trajectory,

∆V (t) = ∆r(t)∆k(t), (1.44)
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where ∆r is a shorthand notation for ∆x∆y∆z, and sim-
ilarly for ∆k. After a short time dt (Fig. 5),

∆r(t+ dt) = ∆r(t) + ∆(ẋdt)∆y∆z (1.45)

+ ∆x∆(ẏdt)∆z +∆x∆y∆(żdt)

≡ ∆r(t) + ∆ṙdt, (1.46)

and similarly for ∆k(t+ dt). Therefore,

∆V (t+ dt) = (∆r+∆ṙdt)(∆k+∆k̇dt) (1.47)

= ∆r∆k+∆r∆k̇dt+∆ṙdt∆k+O(∆2).

It follows that,

d∆V

dt
=

(
∆ṙ

∆r
+

∆k̇

∆k

)
∆V (1.48)

=
(
∇r · ṙ+∇k · k̇

)
∆V. (1.49)

Replace ṙ, k̇ with the right-hand sides of Eqs. (1.36)
and (1.37), and neglect higher-order gradient terms such
as ∂m

∂k
∂B
∂r B, you should be able to get

∇r · ṙ+∇k · k̇ = − 1

D

dD

dt
− e2

ℏ2
E ·B
D

∇k ·Ω. (1.50)

The divergence of the Berry curvature is zero as long as a
trajectory stays away from regions with level-degeneracy.
It follows from Eq. (1.49) that if ∇k ·Ω = 0, then D∆V
is a constant of motion,(

1 +
e

ℏ
B ·Ω

)
∆V = ∆V0, (1.51)

where ∆V0 is the volume element in the absence of the
correction. That is, D (which depends on Ω and B)
modifies the density of states in phase space.

After the modification, the number of particles in ∆V
is f(r,k, t)D(r,k)∆V/(2π)3, where f is the Fermi-Dirac
distribution function. Thus, the particle density in phase
space is

ñ(r,k, t) = D(r,k)f(r,k, t)/(2π)3. (1.52)

The particle density in real space is

n(r, t) =

∫
d3k

(2π)3
D(r,k)f(r,k, t). (1.53)

3. Chiral magnetic effect

According to Eq. (1.41), in the presence of a magnetic
field, the current density,

J(r) = −e

∫
d3k

(2π)3
fDnṙ (1.54)

= −e2

ℏ

∫
d3k

(2π)3
fvn ·Ωn︸ ︷︷ ︸

=αB

B. (1.55)

µ

+
−

L

−Ω

L

+Ω

R

−Ω

R

+Ω
µ

L

−Ω

L

+Ω

R
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R

+Ω

+
−

µ

L

−Ω

L

+Ω

R

−Ω

R

+Ω

+
−

FIG. 6 The Berry flux though the Fermi surfaces of a pair of
Weyl nodes is zero no matter whether the chemical potential
is above, between, or below a pair of nodes.

The same result can be obtained with the theory of linear
response under the static limit (Chang and Yang, 2015a).
From this result, it appears that a current would be

flowing along B with a coefficient αB . However, there
is a simple argument against static CME for a system
in equilibrium (Başar et al., 2014). It is known that the
rate of mechanical work done by an EM field on charges
(per unit column) is J · E. This is what causes the Joul
heat. Now, if J = αBB, then

dW

dt
= J ·E = αBE ·B, (1.56)

which can be positive or negative, depending on the sign
of E · B. That is, it is possible to extract energy from
an equilibrium system, which is unreasonable. Therefore,
there should be no static CME for systems in equilibrium.
In fact, one can show that the integral of αB is zero for

systems in equilibrium (Zhou et al., 2013). First, recall
that ∫

d3k

(2π)3
f =

1

(2π)3

∫
dε

∫
d2S

|∂ε/∂k|
f, (1.57)

in which d2S integrates over a constant-energy surface.
Therefore, one can rewrite the integral in αB as,∫

filled

d3kfvn ·Ωn =
1

(2π)3
1

ℏ

∫ µ

dεf

∫
d2S

vn

vn
·Ω

=
1

(2π)3
1

ℏ

∫ µ

dεf

∫
d2S ·Ω︸ ︷︷ ︸

=ΦΩ(ε)

. (1.58)

The surface integral gives the Berry flux ΦΩ(ε) through
a isoenergy surface. If the surface surrounds a Weyl node
with chirality χ, then ΦΩ = 2πχ.
If the energy ε is above a Weyl point, then there is an

electron pocket surrounding the Weyl point, and v points
out. If the energy ε is below a Weyl point, then there is a
hole pocket surrounding the Weyl point, and v points in.
On the other hand the Weyl cones above and below the
Weyl point have Ω’s with opposite signs. Therefore, no
matter whether ε is above or below the Weyl point, the
Berry fluxes are the same for a given node, ΦΩ(ε) = 2πχ.
Since the Weyl points always appear in pairs with op-

posite chiralities, it follows that no matter what ε is, the
total Berry fluxes passing through an energy shell (with
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 

FIG. 7 The chemical potentials near two Weyl nodes in non-
equilibrium state.

several pieces of isoenergy surfaces) with energy ε is al-
ways zero (Fig. 6). The CME coefficient αB is an integral
of ΦΩ(ε) over energy, but the result remains to be zero
since ΦΩ(ε) = 0 for each energy shells.

However, if the chemical potentials of two Weyl cones,
µ+ and µ−, are not the same, then the cancellation is
not complete (Fig. 7). Suppose µ+ > µ−, then∫ µ+

dε

∫
d2S ·Ω+

∫ µ−

dε

∫
d2S ·Ω

=

∫ µ+

µ−

dε

∫
d2S ·Ω = 2π(µ+ − µ−). (1.59)

It follows that,

J = −∆µ
e2

h2
B. (1.60)

Note: If the magnetic field is time-dependent, then
there can be CME even if the system is originally in
equilibrium. This is the dynamic chiral magnetic effect.
The expression for dynamic αB is different from the one
above. This dynamic CME is closely related to natural
optical gyrotropic effect (Zhong et al., 2016), and does
not even require the existence of Weyl nodes (Chang and
Yang, 2015b).

4. Chiral anomaly

From ñ = Df/(2π)3 and Eq. (1.50), we can also have

∂ñ

∂t
+∇r · (ñṙ) +∇k · (ñk̇) = − e2

ℏ2
E ·Bf∇k ·Ω+D

df

dt
.

(1.61)
The last term is zero in the absence of collision,

df

dt
=

∂f

∂t
+ ṙ · ∇rf + k̇ · ∇kf = 0, (1.62)

which is the collisionless Boltzmann equation. Thus, the
equation of continuity is,

∂ñ

∂t
+∇r · (ñṙ) +∇k · (ñk̇) = − e2

ℏ2
E ·Bf∇k ·Ω. (1.63)

The source/sink term on the right-hand side of the
equation is related to the divergence of the Berry curva-
ture. Since the Berry curvature Ω(k) is like the ”mag-
netic” field in momentum space, its divergence can be

nonzero only if there is a ”monopole” from a Weyl point
inside the Brillouin zone. Integrate Eq. (1.63) over mo-
mentum (at T = 0), one then has

∂n

∂t
+∇r · Jn = − e2

h2
E ·B 1

2π

∫
dSk ·Ω︸ ︷︷ ︸
=χ

, (1.64)

where χ is the chirality of the Weyl point. The equation
for charge density, ρ = −en, is,

∂ρ

∂t
+∇r · J = χ

e3

h2
E ·B, (1.65)

This is the equation for chiral anomaly in Eq. (1.25).

Exercise
1. (a) From the semiclassical equations of motion, derive
Eq. (1.50).
(b) With the help of the equation above, derive
Eq. (1.61).
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