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Topology in vector field (Fluid flow, EM field ...)

Winding number

A map from the path to
the direction of vectors

f:8 =S

Source, vortex, drain

In 2D, they all have w=1
and are deformable to
each other (not so in 3D).
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Winding number again (or, wrapping number)

Now, the vectors on a plane can point out of plane

By stereographic projection, a plane
can be identified with a sphere

* A map from this sphere to o2 )
the direction of vectors f:5—>8
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Basics of differential topology

* How do we define the
curvature of a line (at point p)?

Curvature k at p:

B p=L
Osculating circle r
of point p

« How do we define the
curvature of a surface?

Fit the surface near p
by a quadratic surface
(ellipsoid, paraboloid,
hyperboloid)

A quadratic surface must have two principal directions
with maximum and minimum radii r7,7. They corre-
spond to two principle curvatures ky = 1/r1,ky =
1/75 (up to a sign). F =



Two kinds of curvature

1 1 -
* Mean curvature H=k +k,=—+—  Extrinsic
T o s
* Gaussian curvature  \G_ g p _ 1 Intrinsic > Def 1
hh Pt 4

Without stretching/squeezing a surface (i.e.,
the shortest distance between any 2 points
remain the same), its G will not change.
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Figure 3.6 Bending a sheet of paper changes itz extrinsic— G_O
but not its intrinsic—geometry.




Mean curvature in physics

« Lagrange (1760)
A surface is bounded by a curve. What is the

shape of the surface with the minimum area?

 Plateau (1829)
Such a surface can be simulated by a soap film

Energy of flim
X Surface tension

o Surface area

www.youtube.com/watch?v=jReQUmM9EB9k

The minimal surface has zero mean curvature
at every point!
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Positive and negative
Gaussian curvature
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wordpress.discretization.de/geometryprocessingandapplicationsws 19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/
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The Remarkable Way We Eat Pizza -
Youtube: Numberphile

) i h
* You cannot change Gaussian curvature without
stretching/squeezing the surface.

« That is, without stretching your pizza, its G must
remain zero, and one of the k; , must be zero.
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Theorema Egregium: Gaussian curvature can be determined
(Gauss, 1827) sy sE  entirely by measuring angles, distances
and their rates on a surface.

Intrinsic definition of Gaussian curvature

- Parallel transport of a vector v along a geodesic curve
on a curved surface:
The angles between v and tangent vectors remain fixed.
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anholonomy angle
- After circling a loop, v rotates by an angle < (or defect angle) 57

This kind of behavior is called anholonomy

Gaussian curvature at p
can be defined as

G = lim 24 o Def 2

-




Anholonomy angle on a sphere

_________________

' Parallel | /\

!\ transport . / a,

A general spherical triangle,

Girard theorem (1626)
A=r*(a+pB+y—m)

‘ A
] =) A = —
l
G=lm%-L
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Anholonomy (or non-integrability) in physics

Rotation of polarization in Berry phase of electron spin in
an optical fiber a rotating magnetic field
e
HELICAL MACGCNETIC FIELD a‘gﬁRON
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Gauss map and Gaussian curvature

Unit sphere
Gauss map n\ P

n:M-> s2 A lg \
/ Unit 7 —
) normal“

(b)
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Total curvature

S n

Total curvature of a closed surface is 4,
no matter how the surface is deformed

d

J‘Mdanj.Mc\ig ;{“ =4r

Total curvature is a topological invariant




Platonic solids, F. Maurolico (1537) Beyond regular

olyhedron
e g POY
Euler (1758)
Seisa e Vertices | Edges | Faces Euler characteristic: sphere
v E F V=E*F

Tetrahedron ‘ 4 6 4 2
Hexahedron or cube ‘ 8 12 (5] 2

| - ; y=V-E+F=2-44+4=2
Octahedron ‘ 6 12 8 2

| | torus

Dodecahedron ' 20 30 12 2
Icosahedron ‘ 12 30 20 2

20

y=V-E+F=4-8+4=0

This number is independent of the ways of division,
so it’s a property of the surface itself.

Furthermore, it does not change under continuous
deformation, so it's a topological invariant.
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Euler characteristic of a surface x(M) =2(1-g)

# of holes

S o

X=2 x=0 X=-2 x=-4

In general, for a surface M with dimension D, we can
divide 1t into a patchwork of cells, and define

D
(M) =) (1), (BS)
k=0

where (i 1s the number of k-simplexes. k-E

k=0,1,2,3, ... = VAN @

For a surface (D=2), y(M)=p,-5 + 5,



Gauss-Bonnet theorem (for 2D surface)
— connecting local curvature with global topology

* Closed surface

1 The most beautiful theorem

—| daG= Z( M ) in differential topology
27 M

* Open surface

| —

1
EUMda G+ aMdeg} = ¥(M,0M)
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Anholonomy in geometry and quantum state

Geometry
PT condition * 5 =il .
1 =
anholonomy * Anholonomy angle .
curvature « (Gaussian curvature e

Euler characteristic

1
=—\ da G
x 27 S

Topo number

Chern number refers to the topological number
of fiber bundle space

Fiber bundle space = inner DOF x spacetime

Spin ... etc

Quantum state
I<L’|l.’> — ()
Berry phase

Berry curvature

Chern number

1
C:EjMdaQ
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What is a fiber bundle #&4:= Ref: Fiber bundles and quantum theory, by
Bernstein and Phillips, Sci. Am. 1981

Simplest examples:

* Trivial fiber bundle * Nontrivial fiber bundle
(= a product space) Mobius band
R x R1
base
T E.Iirecticrn h;n'immai directions
Anholonomy |
" bundle
geometric phase i
fiber space
/ ™ . bundle projection
base space (inner DOF) l S i

Fiber bundle %&pﬂﬂ:
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Fiber bundles in physics

System

 EM without monopole
 EM with monopole

« Electro-weak theory

- QCD

« Abelian Berry phase

* Non-Abelian Berry
phase

Base space

Spacetime
Spacetime
Spacetime
Spacetime
Parameter manifold

Parameter manifold

Space,
Brillouin zone
... etc

Fiber space
U(1) trivial
U(1) nontrivial —
U(1)xSU(2)

SU(3)

Lie groups



Winding number again

Index of a point defect

R, \
i s
N v

AR

Fig from Jonas Kibelbek
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Hopf-Poincare theorem

- Connecting index of point defect with topology
) Winding
Zmd("i) = (M) number

On a sphere

A ball ik Stiff, :smjm A stwt ot combing fhe
povcupive - ke quills ball 50 fhat tre quills
wmoansting ot fvom li, flat agalvisf e laa|

Yikes! One gill
shdsS out
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A “proof” of Hopf-Poincare theorem

Youtube course: Topology & Geometry, by Tadashi Tokieda

IR RZIE
Put a source on a vertex, a saddle point on an edge,
and a sink on a face
sink
saddle
source Point

Y "ind(vi) = (+1)Bo + (=1)B1 + (+1)52 ;

J k

1 — _\"(f\f) \(AI)ZZ(—I) ,3;;

k=0
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Vector field on a torus

> ind(v,) = 1(T*)=0

Application: Brillouin zone as a torus (1D, 2D, 3D)

>
A A

»

Berry connection A(k) as a vector field in BZ

-n/a

k

Y

n/a
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