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I. 1D p-WAVE SUPERCONDUCTOR

Here we study p-wave SC in 1D with non-trivial topol-
ogy. Material with p-wave SC is rare (an example is
strontium ruthenate, Sr2RuO4), but as we will see in
later chapters, effective p-wave pairing can be achieved
with hybrid structures consisting of s-wave SC material
and material with spin-orbital coupling.

In this chapter, the fermions are either spinless, or
spin-polarized, so that the spin degree of freedom can
be ignored. We first consider a continuum version, then
a lattice version of the 1D p-wave SC (the Kitaev model).
The main references we use on topological superconduc-
tor are Bernevig and Hughes, 2013 and Nomura, 2013.

A. Continuum model

The Hamiltonian of the 1D p-wave SC is given as

H =
∑
k

[
εkc
†
kck +

1

2

(
∆kc

†
kc
†
−k + ∆∗kc−kck

)]
(1.1)

=
1

2

∑
k

(c†kc−k)

(
εk ∆k

∆∗k −εk

)(
ck
c†−k

)
, (1.2)

in which εk = ~2k2/2m− µ, and ∆k = ∆0k. The eigen-
energies are,

E±(k) = ±
√
ε2k + |∆k|2. (1.3)
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FIG. 1 The energies ±Ek plotted for 3 chemical potentials.

The eigenstate (uk, vk) for energy Ek has the compo-
nents,

uk =

√
1

2

(
1 +

εk
Ek

)
; vk =

√
1

2

(
1− εk

Ek

)
∆∗k
|∆k|

. (1.4)

The particle-hole symmetry has been discussed in
Sec. ??.

Near k = 0, εk ' −µ, and Ek ' |µ|. In Fig. 1, we show
the dependence of the energy spectrum on the chemical
potential. For both µ < 0 and µ > 0, the spectra are
gapful. If µ = 0, then E+(k), E−(k) touch at k = 0.

If µ < 0, then for small k, uk ' 1, vk ' ∆∗k/2|µ|. It
is known that the Fourier transform of the Cooper pair
wave function g(x) is g(k) = vk/uk (de Gennes, 1989).
So for µ < 0, g(k) ∝ k. The function g(k) being ana-
lytic near k = 0 implies that its Fourier transform falls
off exponentially at large distance, g(x) ' e−x/x0 . The
phase with µ < 0 is thus called the strong-coupling phase
(Read and Green, 2000).

On the other hand, if µ > 0, then for small k, uk '
|∆k|/2µ, vk ' 1 (we have ignored the phase of ∆k), and
g(k) ∝ 1/k. The sharp peak near small k implies a slow
decay of g(x) at large distance. So the phase with µ > 0
is called the weak-coupling phase.

These two phases cannot be adiabatically connected to
each other (see p. 198 of Bernevig and Hughes, 2013).
Furthermore, the weak-coupling phase has non-trivial
topology.

1. Edge state

We now assume µ(x > 0) > 0, and µ(x < 0) < 0, so
the 1D space is separated to a weak-coupling phase and
a strong-coupling phase (e.g., µ(x) = µ0 tanhx). Ignore
terms of order k2, the BdG equation is,(

−µ(x) ∆0k
∆0k µ(x)

)
ψ = Eψ. (1.5)

We are only interested in the edge-state solution. Let
k → ∂/i∂x, and try

ψ(x) = ψ0e
− 1

∆0

∫ x
0
dx′µ(x′), (1.6)

then (
−µ(x)− E iµ(x)
iµ(x) µ(x)− E

)
ψ0 = 0. (1.7)
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At E = 0, we have a solution,

ψ0 =
1√
2

(
1
−i

)
. (1.8)

This is a zero mode localized at the interface.
The Bogoliubov quasiparticle (QP) operator for the

zero mode is,

γ0 =

∫
dx
[
u∗(x)ψ(x) + v∗(x)ψ†(x)

]
(1.9)

=
eiπ/4√

2

∫
dxe−

1
∆0

∫ x
0
dx′µ(x′)

[
e−iπ/4ψ(x) + eiπ/4ψ†(x)

]
.

Removing the overall phase of π/4, we have

γ†0 = γ0. (1.10)

That is, the anti-particle of the QP is the same as the QP.
Such a fermion is called a Majorana fermion (MF).
The zero mode is protected by the PH symmetry, as long
as it’s non-degenerate. For a general introduction to the
Majorana fermion, one can read Wilczek, 2009.

B. Kitaev model

We now study the Kitaev model of a 1D p-wave SC
(Kitaev, 2001). It is the lattice version of the continuum
model introduced in previous section. With the lattice,
the topological number can be defined naturally.

Consider a 1D lattice with N sites (lattice constant
a = 1) under periodic BC, cN+1 = c1. The Hamiltonian
is,

H =

N∑
j=1

[
− t

2
(c†j+1cj + c†jcj+1)− µc†jcj (1.11)

+
∆0

4

(
c†j+1c

†
j − c

†
jc
†
j+1 + h.c

)]
, t > 0,∆0 ∈ R.

With the Fourier transformation,

c†j =
1√
N

∑
k

eijkc†k, (1.12)

one has

H =
∑
k

[
−t cos kc†kck − µc

†
kck (1.13)

+
∆0

4

(
eikc†kc

†
−k − e

−ikc†kc
†
−k + h.c

)]
.

It can be written in matrix form,

H =
1

2

∑
k

(c†kc−k)

(
−t cos k − µ i∆0 sin k
−i∆0 sin k t cos k + µ

)(
ck
c†−k

)
+

1

2

∑
k

t cos k + µ. (1.14)

The eigen-energies are,

E±(k) = ±
√

(t cos k + µ)2 + ∆2
0 sin2 k. (1.15)

The energy gap closes when both{
sin k = 0,

t cos k + µ = 0.
(1.16)

The gap at k = 0 closes at µc = −t, and the gap at k = π
closes at µc = t. So there are 3 quantum phases within
the ranges µ < −t, |µ| < t, and µ > t.

1. Topological number

The 2 × 2 Hamiltonian matrix can be written in the
standard form, H(k) = d · σ, where

d = −(0,∆0 sin k, t cos k + µ). (1.17)

When k moves from −π to π, the tip of d(k) moves
around an ellipse on the y − z plane with a center at
z = −µ. If µ > t, then the origin is outside of the ellipti-
cal loop, and the winding number of the map k → d(k)
is zero. If |µ| < t, then the origin is inside the loop, and
the winding number is 1. If µ < −t, then the winding
number is again 0. To change from 1 to 0, or 0 to 1, the
loop needs to cross the origin – at that point the energy
gap vanishes.

This indicates that the region |µ| < t is the topolog-
ically non-trivial phase, while the region |µ| > t is the
trivial phase. These two phases with different winding
numbers can be distinguished by a Z2 topological num-
ber ν, which is defined as (see Nomura, 2013),

(−1)ν = sgn[dz(0)]sgn[dz(π)]. (1.18)

In our case, dz(0) = −t − µ, dz(π) = t − µ. It’s not
difficult to see that the origin can be inside the loop only
when these two quantities have opposite signs.

Note: In the phase with µ < |t|, it seems that two
systems with t > 0, t < 0 would give opposite winding
numbers, indicating different topological phases. This is
not true. For example, let µ be slightly non-zero, and
∆0 6= 0, then the energy gap remains open when t is
changed to −t, so these two are in the same phase.

2. Kitaev chain with open ends

To study the edge states of an open Kitaev chain,
it’s convenient to introduce the Majorana fermion
representation. The usual fermions satisfy the anti-
commutation relation,

{cj , c†j′} = δjj′ . (1.19)

Let aj be Majorana fermion operators, with a†j = aj .
Define their anti-commutation relations as,

{aj , a†j′} = 2δjj′ . (1.20)



3

…

…

j=1 j=2 j=N

j=1 j=2 j=N

(a)

(b)

c1 c2 cN

d1 d2 dN-1

FIG. 2 A Kitaev chain with N sites and open ends. (a) A
fermion operator cj is composed of two MF operators. (b)
Using a pair of MFs from different physical fermions to build
a fermion operator dj .

Then, of course, {aj , aj′} = 2δjj′ , and a2j = 1 (not zero!).
Decompose a fermion into 2 MFs (see Fig. 2(a)),

cj =
1

2
(a2j−1 + ia2j), (1.21)

then c†j =
1

2
(a2j−1 − ia2j). (1.22)

This is analogous to the decomposition of a complex num-
ber to two real numbers. Given Eq. (1.20), one can verify
that they do satisfy Eq. (1.19).

Now consider a Kitaev chain with two open ends and
N lattice sites (j = 1, · · · , N). The Hamiltonian is,

H = − t
2

N−1∑
j=1

c†j+1cj + c†jcj+1 − µ
N∑
j=1

c†jcj

+
∆0

2

N−1∑
j=1

c†j+1c
†
j + cjcj+1 (1.23)

=
i

4

N−1∑
j=1

(t+ ∆0)a2ja2j+1 + (−t+ ∆0)a2j−1a2j+2

− i

2

N∑
j=1

µa2j−1a2j . (1.24)

Notice that since (a2ja2j+1)† = −a2ja2j+1 (anti-
hermitian), so the factor i is required.

For simplicity, consider the case with ∆0 = t, then

H =
i

2

N−1∑
j=1

ta2ja2j+1 −
i

2

N∑
j=1

µa2j−1a2j . (1.25)

We know that it is a trivial SC when |µ| > t. When
|µ| < t, it is a topological SC with Majorana edge states
(see Fig. 3). This fact is trivial when µ = 0: the 2nd
term vanishes, and thus the 2 MFs on the ends decouple
from the rest of the MFs. That is, there is a lone MF on
each end of the chain. Such a conclusion does not change
if µ 6= 0. One can consult Kitaev, 2001 for more details.

On the other hand, for the trivial phase (|µ| > t), one
can choose t = 0 to simplify the Hamiltonian. Then every
MF in the chain is coupled with its neighbor, and there
is no lone MF at the ends.

x

x

t− t

0µ =

0t =

µ

(a)

(b)

FIG. 3 (a) For t > 0, µ = 0 is in the topological phase. (b)
For t = 0, µ > 0 is in the trivial phase.

Some comments on the realization of Majorana
fermions in real 1D systems. p-wave SC is rare, but one
can combine s-wave superconductivity with spin-orbit
(SO) coupling to produce an effective p-wave SC (Fu and
Kane, 2008). In practice, one can put a metal wire on
top of a s-wave SC. Either the wire or the SC needs to
have the SO coupling. As a result, the electrons in the
wire then interact with both the SO coupling and the
superconductivity (through the proximity effect). Fur-
thermore, since spin degeneracy could double the number
of zero modes and destablize the MFs, magnetic mate-
rial or magnetic field needs be introduced to break the
degeneracy. For example, Nadj-Perge et al., 2014 uses
ferromagnetic iron atomic chains on top of a supercon-
ducting lead (which has strong SO coupling). Some more
discussions can be found in Alicea, 2012.

A brief summary of 1D models with nontrivial topol-
ogy: In the exercise of Chap ??, we have studied the
SSH model of polyacetylene. In Chap ??, we introduced
the Fu-Kane spin pump. In this Chap we have the Ki-
taev model of p-wave SC. Other 1D models not covered
in this course are, for example, the AKLT model of spin-
1 chain, and the Lubensky-Kane model of mechanical
chain. They all have non-trivial topology, and they all
have robust edge states.

3. Fermion parity of the ground state

As we have explained above, for the topological ground
state, there are two Majorana fermions at the ends of the
chain. The two MFs have the same degrees of freedom
as one ordinary fermion, which can either be occupied or
unoccupied. Since the energy of the MFs is zero, these
two possible states are both ground states. That is, we
expect the topological ground states of the Kitaev chain
to be two-fold degenerate. These two states can be char-
acterized by the fermion parity, which is explained be-
low.

First, the fermion parity of site-j with fermion number
nj is defined as,

(−1)nj =

{
+1 if nj = 0,
−1 if nj = 1.

(1.26)
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When written in operators, one has (nj = c†jcj)

(−1)nj = eiπnj (n2j = nj)

= 1− 2nj (1.27)

= −ia2j−1a2j . (1.28)

We’d like to know if the fermion parity operator com-
mutes with the Hamiltonian. First, one can show that∑

j

[c†jcj+1, c
†
i ci] + h.c. = 0. (1.29)

Second,∑
j

[c†jc
†
j+1, c

†
i ci] + h.c. = −c†i−1c

†
i − c

†
i c
†
i+1 + h.c.

= 0 mod 2. (1.30)

The result is not zero, but since the SC ground state does
not have a definite number of Cooper pairs, so when the
fermion parity operator is acting within the subspace of
the SC ground state, the commutator can be considered
as 0. That is, the fermion parity operator ‘effectively’
commutes with the Hamiltonian.

We thus define the fermion parity operator for the
whole system as,

PF =

N∏
j=1

(1− 2c†jcj) (1.31)

=

N∏
j=1

(−ia2j−1a2j), P 2
F = 1. (1.32)

Its eigenvalue can only be ±1: for the trivial phase, it is
always +1; for the non-trivial phase, it can be +1 or −1.
This is demonstrated below.

The SC state of the Kitaev model is trivial when |µ| >
t. To study its fermion parity, for simplicity, let ∆0 = t,
and just pick up a particular set of parameters with t =
0, µ < 0. Then

H = − i
2

N∑
j=1

µa2j−1a2j . (1.33)

Rewrite ia2j−1a2j = 2c†jcj − 1, then

H = |µ|
N∑
j=1

(
c†jcj −

1

2

)
. (1.34)

Therefore, the ground state is annihilated by cj , cj |0〉 =
0. Its fermion parity is +1, since

PF |0〉 =

N∏
j=1

(1− 2c†jcj)|0〉 (1.35)

= |0〉. (1.36)

On the other hand, for the non-trivial phase in |µ| <
t (t > 0), let ∆0 = t and µ = 0, then

H =
i

2

N−1∑
j=1

ta2ja2j+1. (1.37)

Since the edge states decouple from the bulk states,
instead of Eq. (1.22), for fermions in the bulk (j =
1, · · · , N − 1), define (see Fig. 2(b))

dj =
1

2
(a2j + ia2j+1), (1.38)

then d†j =
1

2
(a2j − ia2j+1). (1.39)

Rewrite ia2ja2j+1 = 2d†jdj − 1, then

H = t

N∑
j=1

(
d†jdj −

1

2

)
. (1.40)

Therefore, the ground state is annihilated by dj , dj |0〉 =
0. To calculate its fermion parity, first rewrite

PF = −ia1
N−1∏
j=1

(−ia2ja2j+1)a2N (1.41)

= −ia1a2N
N−1∏
j=1

(1− d†jdj). (1.42)

Since dj |0〉 = 0, we have

PF |0〉 = (−ia1a2N )|0〉. (1.43)

From a pair of edge MFs, one can define a highly non-
local fermion,

f =
1

2
(a1 + ia2N ), (1.44)

then f† =
1

2
(a1 − ia2N ). (1.45)

The eigenvalues of fermion-number operator can be 0 or
1. The eigenstates are designated as |0+〉 and |0−〉. That
is,

f†f |0+〉 = 0, (1.46)

f†f |0−〉 = |0−〉. (1.47)

Furthermore,

− ia1a2N = 1− 2f†f. (1.48)

Therefore,

PF |0±〉 = (−ia1a2N |0±〉 (1.49)

= (1− 2f†f)|0±〉 (1.50)

= ±|0±〉. (1.51)
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That is, the ground states for the non-trivial phase are
two-fold degenerate and can be labelled by the fermion
parity. It can be considered as a 2-state system that
could store 1 qubit of information. Being nonlocal, such
a qubit is robust against local perturbations.

Note: Since the fermion operators f operate within
a 2D Hilbert space, they can be represented by Pauli
matrices,

f ' σ+ (1.52)

f† ' σ− (1.53)

1− 2f†f ' σz. (1.54)

Or,

a1 ' σx, (1.55)

a2N ' σy, (1.56)

−ia1a2N ' σz. (1.57)

Exercise
1. One can write fermion operators in terms of spin
operators,

a2j−1 =

(
j−1∏
k=1

σzk

)
σxj , (1.58)

a2j =

(
j−1∏
k=1

σzk

)
σyj . (1.59)

This is called as the Jordan-Wigner transformation.
Show that, using this transformation, the Hamiltonian of
the Kitaev chain,

H =
i

2

N−1∑
j=1

ta2ja2j+1 −
i

2

N∑
j=1

µa2j−1a2j ,

can be transformed to

H = −Jx
N−1∑
j=1

σxj σ
x
j+1 + h

N∑
j=1

σzj , (1.60)

where Jx = t/2, h = µ/2. This is the Hamiltonian of an
Ising spin chain in a transverse magnetic field h. Also,

show that

PF =

N∏
j=1

(−ia2j−1a2j) =

N∏
j=1

σzj . (1.61)

Note: There are two possible quantum phases in the Ising
chain above: (a) When |h| < Jx, the ground state has
all the spins either parallel or anti-parallel to the x-axis
(two-fold degenerate). (b) When |h| > Jx, the ground
state has all the spins anti-parallel to the magnetic field
(non-degenerate).
2. Show that the inverse of the Jordan-Wigner transfor-
mation is given as,

σ+
j = cj

j−1∏
k=1

(−1)c
†
kck , (1.62)

σ−j = c†j

j−1∏
k=1

(−1)c
†
kck . (1.63)

Also,

σzj = 1− 2c†jcj . (1.64)

Therefore, one can transform the Hamiltonian of a spin
chain to that of a chain with fermions.
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