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I. WEYL SEMIMETAL

There are two important types of nodal points in 3D.
One is the point degeneracy between two energy levels,
the other is the point degeneracy between four energy
levels, see Fig. 1. To distinguish between them, from
now on we call the former a Weyl point, and the latter
a Dirac point. In this and the following chapter, we
will study the Weyl point.

A. Classification of Weyl node

The Hamiltonian near a Weyl point can be written as

H = d(k) · σ, (1.1)

where k is the momentum away from the node. If the
components of d are all linear in k, then we call it a
linear Weyl node. If at least one of the components of
d is quadratic in k, then we call it a quadratic Weyl
node, and so on.

The topological charge (or Berry index) of a node is

(a) (b)

FIG. 1 (a) A Weyl point between two levels. (b) A Dirac
point between 2 double-degenerate levels.

FIG. 2 The textures of d(k) of two Weyl points with opposite
helicities. The figures are from somewhere on the web.

given by the first Chern number (see Sec. ??),

QT =
1

2π

∫
S2
k

d2k · F, (1.2)

Fk =
1

2d3
d · ∂d

∂ki
× ∂d

∂kj
. (1.3)

The integral is over a constant-energy surface with fixed
|d|, and i, j, k are in cyclic order. We learned in Sec ??
that the integrand is just (half of) the solid angle of the
image f : S2

k → S2
d, thus QT is the winding number of

the map.
For example, consider

H = ±k · σ, (1.4)

the textures of d(k) = ±k around the nodal point are
shown in Fig. 2. It is obvious that the winding numbers,
and hence the topological charges, are ±1. The sign ± is
called the helicity (or chirality) of the Weyl point.

For a general linear node, its topological charge re-
mains to be +1 or −1. Its sign can be determined by the
sign of the Jacobian of the map k→ d(k),

QT = sgn

∣∣∣∣ ∂di∂kj

∣∣∣∣ , (1.5)

which is the same for every point k. The sign simply
shows that whether the map preserves or reverses the
orientation.

For a Weyl node with higher order, its topological
charge can also be determined by the energy dispersion
near the node. This is explained below (see the App. of
Chang and Yang, 2015) : An image point dr is called a
regular point if the Jacobian |∂dri /∂kj | 6= 0. A regu-

lar point can have none, or several pre-image points k(`),
d(k(`)) = dr, ` = 1, · · · , N . The degree of the map f is
defined as,

degf =

N∑
`=1

sgn

(∣∣∣∣ ∂di∂kj

∣∣∣∣
k=k(`)

)
. (1.6)
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FIG. 3 The winding number is determined by the degree of
the map, which is the same irrespective of the direction one
peeps.

It is equal to the winding number, and thus the topolog-
ical charge QT = degf . Brouwer’s lemma guarantees
that degf is the same for every regular points. For an
illustration of the winding number for a 1D loop around
a point, see Fig. 3. Therefore, one can choose a conve-
nient dr to calculate it. For more details, see Sec. 10.7
of Felsager, 1998, or Milnor, 1965.

For example, for the following quadratic Weyl node,

d(k) '

(
k2y
2
− k2x

2
, kxky,±kz

)
, (1.7)

the Jacobian is ∣∣∣∣ ∂di∂kj

∣∣∣∣ = ∓(k2x + k2y). (1.8)

Choose d0 = (1/2, 0, 0), then there are two pre-images,
k(1) = (0, 1, 0) and k(2) = (0,−1, 0). They contribute
to QT = ∓2 in total. A node with |QT | = 2 is called a
double Weyl node.

If dx(k) is changed to (k2x+k2y)/2, then the topological
charge would be 0. That is, not all quadratic Weyl nodes
are double Weyl nodes.

B. Linear Weyl node

In the following, we focus only on the linear Weyl
node. Its gauge structure is similar to that of a magnetic
monopole. For example, for the nodal point in Eq. (1.4),
the Berry curvature is

F = ∓1

2

k̂

k2
, (1.9)

which is the same as the magnetic field of a monopole.
(Cf: Berry curvatures of various 2D systems in Sec. ??.)

Once a Weyl node exists, it is stable against perturba-
tions. Consider

H = ±vk · σ +H ′, (1.10)

TABLE I Counting Weyl nodes

time-rev symm space-inv symm min number

× × 2

◦ × 4

× ◦ 2

◦ ◦ unstable

H ′ is an arbitrary perturbation that can be expanded by
Pauli matrices,

H ′ = a(k) + b(k) · σ (1.11)

= a(k) + b(0) · σ + σ ·
∑
j

∂b

∂kj

∣∣∣∣∣∣
0

kj +O(k2). (1.12)

It’s obvious that the second term shifts the position of
the node, the third renormalizes the velocity of the Weyl
electron, but no gap is opened. That is, the Weyl point
remains intact under an arbitrary perturbation. It could
disappear only by merging with another node with oppo-
site topological charge.

1. Multiplet of nodes due to symmetry

First, in odd spatial dimension, in the absence of space
or time symmetry, massless lattice fermions are required
to appear in pairs with opposite helicities. This is the
Nielsen-Ninomiya theorem (Nielsen and Ninomiya,
1981a,b), or fermion-doubling theorem (see App. ??).
A simple explanation is as follows (Armitage et al., 2018):
If we surround a Weyl point at k0 with a closed surface
S, the the Berry flux through S is 2πQT . We can inflate
this surface S to cover the whole BZ. But because of the
periodicity of the BZ, ∂BZ = 0. Hence the total Berry
flux should be zero. This implies that there must be
another Weyl point with an opposite topological charge
inside the BZ.

We now consider one node with helicity + or −,

H = ±v(k− k0) · σ. (1.13)

Under time-reversal transformation (if the pseudo-spin
behaves like a spin),

k→ −k, σ → −σ. (1.14)

So

H→ H′ = ±v(k + k0) · σ. (1.15)

Therefore, if there is TRS, then there must be another
nodal point at −k0 with the same helicity.

Under space-inversion transformation,

k→ −k, σ → σ. (1.16)
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FIG. 4 Band inversion with spin-orbit coupling could lead to
topological insulator or Dirac/Weyl semimetal.

So

H→ H′ = ∓v(k + k0) · σ. (1.17)

Therefore, if there is SIS, then there must be another
nodal point at −k0 with opposite helicity.

When both TR and SI symmetries exist, each node
consists of two monopoles with opposite charges. The net
topological charge of a nodal point (with 4 levels) is zero,
and this Dirac node is not stable against perturbations
(see Table I).

Note that when there is only SIS (but no TRS), then
the minimum number of Weyl points in a solid is 2. If
there is only TRS (but no SIS), then the minimum num-
ber is 4 (see Chap 7 of Meng, 2012), since TR-doublet
would have a partner doublet with opposite helicity, as
required by the Nielsen-Ninomiya theorem.

C. From Dirac to Weyl

A Weyl point is topologically stable, but there is no
systematic way to find it. On the other hand, a Dirac
point is not protected by topology, but there is some
guideline for discovering it. Therefore, we can first search
for Dirac semimetal, then break TRS or SIS to generate
Weyl points.

There are several ways to engineer or search for the
Dirac semimetal (Armitage et al., 2018). First, one can
change the composition of a hybrid structure, or change
the material composition of a compound to produce a
phase transition between a normal insulator and a topo-
logical insulator. At the critical point, the energy gap
is closed and we could have the degenerate point. More
details can be found in next Sec.

Second, we can rely on the mechanism of band inver-
sion. Recall that in a TI, SOC would open a gap at
the crossing point of inverted bands. However, if the

glide 

plane

(a) (b)

screw axis

FIG. 5 Two examples of nonsymmorphic symmetry: (a) A
glide plane consists of a mirror reflection (with respect to
the mirror plane), and a translation the dotted line by 1/2
primitive lattice vector. (b) A screw axis consists of a π-
rotation around the axis, and a translation along the axis by
1/2 primitive lattice vector.

two bands belong to different irreducible representations
(IRs) of the space group of a crystal, then they would
not couple with each other to open a gap (Fig. 4). This
symmetry-protected degenerate point often occurs along
a symmetry axis. Several Dirac materials belong to this
class, such as alkali pnictides A3B (A=Na, K, Rb ...,
B=As, Sb, Bi ...), and Cd3As2.

Before introducing the third way of search, some
knowledge of space group is required:

1) In a BZ, certain k-points can be invariant (mod
reciprocal lattice vector G) under some symmetry op-
erations of a space group. A subgroup Gk of the space
group of a crystal that leaves k invariant is called a little
group. This k-point cannot be inside the Brillouin zone
(except the origin), but is located at some high symmetry
point on a BZ surface.

2) Space groups can be divided into two classes: If,
apart from lattice translation, all symmetry operations
leave one point fixed, then the space group is symmor-
phic. If a fraction of primitive lattice translation is in-
volved in symmetry operations, then the space group is
nonsymmorphic. There are two new types of symme-
try operations in nonsymmorphic space groups: glide
planes or screw axes (Fig. 5). There are 157 nonsym-
morphic space groups out of 230 space groups.

To find a Dirac semimetal, we can look for materi-
als with a little group Gk that has four-dimensional IR
(FDIR) at some high symmetry k-point. Such a possi-
bility can be excluded for any symmorphic group in 3D.
Therefore, one only need to search within crystals with
nonsymmorphic symmetry. At that high-symmetry k-
point, 4 levels would cross each other to form a Dirac
point. These points can be located on the face, edge, or
corner of a BZ surface.

The analysis based on 4-state Hamiltonians in previ-
ous Chap, with the addition of crystal symmetry (not
discussed there), is relevant to the crossing of 4 levels
near a Dirac point. There are several possible patterns
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FIG. 6 Different patterns of level splitting near a Dirac point.

of the crossing, as shown in Fig. 6. For the band-inversion
mechanism, the space inversion operator Π can be 1 or
τz. However, if Π = τx, then it is an exchange of or-
bital degree of freedom, which can be associated with
the exchange of sublattices produced by a non-primitive
translation in a nonsymmorphic space group (Armitage
et al., 2018).

After having the Dirac semimetal, one can break the
TRS or the SIS to obtain the Weyl semimetal. The can-
didates for the former case includes, e.g., GdPtBi, and
some magnetic Heusler compounds. For the latter case,
we have WTe2, MoTe2, RhSi, and the TaAs family
(Zhang et al., 2021).

D. The Burkov-Balent multilayer model

Without diving into the subject of space group sym-
metry, here we introduce a simplified model proposed by
Burkov and Balent (Burkov and Balents, 2011) to pro-
duce a Dirac/Weyl point. Consider a structure with al-
ternating layers of normal insulators (NI) and topological
insulators (TI) stacked along the z-axis (see Fig. 7). Cou-
pling of the top and down surface states (SS) of a TI layer
is written as ts; coupling of SS between nearest-neighbor
TI layers is written as td.

When the intra-layer coupling is larger than the inter-
layer coupling (ts > td), the whole structure is similar to
a NI. On the other hand, when td > ts, the whole struc-
ture is similar to a TI. By tuning the relative strength
between ts and td, one can induce a topological phase
transition at certain critical value. At that value the bulk
gap is expected to close, probably producing a point de-
generacy.

However, from the analysis in previous section, we
know that with both TRS and SIS, this degenerate
(Dirac) point would be unstable. The degeneracy would
be lifted when one of the symmetry is broken.

For one TI slab doped with magnetic elements, the
Hamiltonian with the SS coupling is,

H = vτz ⊗ (σ × k⊥) · ẑ +m1⊗ σz + tsτx ⊗ 1, (1.18)

in which τ accounts for the up and down layers degree of
freedom, and m is the magnetization. From now on we
will drop the ⊗ sign.

NI

(ts > td ) = NI (ts < td ) = TI 

TI

d

td

ts

FIG. 7 A multi-layer structure with alternating layers of nor-
mal insulator (NI) and topological insulator (TI).

For multiple-layers, we have

Ĥ =
∑
l

[vτz(σ × k⊥) · ẑ +mσz + tsτx] c†l cl

+
∑
l

td(τ+c
†
l cl+1 + τ−c

†
l cl−1), (1.19)

where τ± = (τx±iτy)/2, cl = (clu, cld)
T is a 2-component

operator such that τ+c
†
l cl+1 = c†lucl+1d · · · etc.

Assume there are N (NI+TI)-layers with period d, and
impose the periodic BC along z-axis. Using the Fourier
transformation,

c†l =
1√
N

∑
kz

eildkzc†kz . (1.20)

one has,

Ĥ =
∑
kz

[
vτz(σ × k⊥) · ẑc†kzckz

+ mσzc
†
kz
ckz

+ tsτxc
†
kz
ckz

+ td(e
−ikzdτ+c

†
kz
ckz + eikzdτ−c

†
kz
ckz )

]
(1.21)

=
∑
kz

(
h0 +mσz ts + tde

−ikzd

ts + tde
ikzd −h0 +mσz

)
c†kzckz ,

≡
∑
kz

Hkzc
†
kz
ckz , (1.22)

where h0 = v(σ × k⊥) · ẑ, and

Hkz = τzh0 +mσz

+ tsτx + td(e
−ikzdτ+ + eikzdτ−). (1.23)

Each kz-subsystem is independent of each other.
Under the unitary transformation (Burkov et al.,

2011),

U =

(
1 0

0 σz

)
(1.24)

one has

τx,y → U†τx,yU = τx,yσz, (1.25)

σx,y → U†σx,yU = τzσx,y. (1.26)
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FIG. 8 (a) With both TRS and SIS, the critical line at ts = td
are composed of unstable Dirac points. (b) After breaking the
TRS with magnetization m, a Dirac point in (a) separates to
two Weyl points and there is a finite region of Weyl semimetal
phase. The gapped phase on the lower left is a semi-quantum
anomalous Hall phase. As m gets larger, the point marked
with× is first engulfed by the Weyl phase, then by the semi-
QAH phase.

τz and σz are not changed. After the transformation,

Hkz = h0 +mσz

+ [tsτx + td(e
−ikzdτ+ + eikzdτ−)]σz. (1.27)

One can rotate the τ on the 2nd line without changing
the first line. Thus, the Hamiltonian is decomposed to 2
diagonal blocks,

Hkz = h0 +

[
m+ τz

√
t2s + t2d + 2tstd cos(kzd)

]
︸ ︷︷ ︸

Mτz (kz)

σz

= v(σ × k⊥) · ẑ +Mτz (kz)σz, (1.28)

where M±(kz) can be considered as the effective magne-
tization of the 2D electron gas in the kz-layer.

Finally, the 2× 2-blocks can be easily diagonalized to
get the eigenvalues,

ετz± = ±
√
v2(k2x + k2y) +M2

τz (kz). (1.29)

Let m > 0, then M+(kz) is always positive, and ε+± has

a finite gap. On the other hand, ε−± can be gapless if
M−(kz) = 0, or

cos(k0d) =
m2 − (t2s + t2d)

2tstd
. (1.30)

That is, if

|ts − td|︸ ︷︷ ︸
mc1

≤ m ≤ |ts + td|︸ ︷︷ ︸
mc2

, (1.31)

then there are a pair of Weyl nodes at ±k0ẑ (see Fig. 9).
If m < |ts − td|, then Eq. (1.30) has no real solution,

and M−(kz) < 0. If m > |ts− td|, then Eq. (1.30) has no
real solution, and M−(kz) > 0. For small m, the material
is a trivial insulator. The pair of Weyl nodes appear at

( )2
0

D

H z
kσ =

Μ−(k
z
)

kz

Dirac string 

d

π

d

π
−

( )
2

2D

H z

e
k

h
σ =

FIG. 9 M−(kz) plotted as a function of kz. The plot is rotated
by 90 degrees.

kzd = π when m = mc1. They move apart along the
kz-axis when m > mc1, and merge with each other again
at kz = 0 when m = mc2 (see Fig. 10). After that,
the energy gap is re-opened, but the system becomes a
non-trivial insulator (see Fig. 8(b)).

We now focus on the Weyl semimetal phase. As shown
in Eq. (1.22), the system is composed of decoupled 2D
sub-systems, each has their own kz-layer of 2D BZ . Since
the Weyl point is a 3D monopole, it has a string of gauge
singularity (Dirac string). The location of the string is
gauge dependent, but they should connect the two Weyl
nodes (see Fig. 10). The 2D kz-layers within |kz| < k0
(M−(kz) < 0) do not intersect with the gauge singularity,
and the first Chern number C1 = 0. On the other hand,
the kz-layers outside of that range would intersect with
the Dirac string. At the point of intersection is a vortex
singularity of the gauge potential. This leads to C1 = 1,
and σ2D

H (kz) = e2/h for each of the 2D-subsystem. See
Sec ?? for the discussion of the vortex in the BZ of a
quantum Hall system.

As a result, the 3D Hall conductivity is

σ3D
H =

1

Lz

∑
kz

σ2D
H (kz)

=

∫ π/d

−π/d

dkz
2π

σ2D
H (kz) =

e2

h

k̄0
π
, (1.32)

where k̄0 = π/d−k0 is half the length of the Dirac string.
When m = mc2, the two nodes merge at kz = 0, and

the Dirac string spans the whole kz-axis. After that, the
system enters the semi-quantum anomalous Hall phase
with

σ3D
H =

e2

h

1

d
. (1.33)

In a magnetic Weyl semimetal that breaks time-reversal
symmetry, it is possible to have such an anomalous Hall
state (Liu et al., 2018).

Some of the Weyl semimetals proposed early are
antiferromagnetic (that break TRS), such as the py-
rochlore irridates A2Ir2O7(A = Y,Eu,Nd...). Other
Weyl semimetal with antiferromagnetic order are
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kz
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Brillouin zone

k0

k0

Surface BZ 

for [100]

FIG. 10 A pair of Weyl points appear at kz = π when m =
mc1. They stretch out a Dirac string (red dotted lines) at
larger m, and finally merge with each other at m = mc2, but
leaving a full Dirac string behind.

Mn3Sn,Mn3Gn. Later it was found that some
Heusler compounds are good candidates of magnetic
Weyl semimetals. For example, the LnPtBi family
(Ln = Gd,Nd ...) of half-Heusler compound. Weyl
nodes are also predicted to be common in cobalt-
based magnetic Heusler compound, such as Co2Y Z(Y =
V,Zr,Nb...;Z = Si,Ge.Ne...), and Co2MnAl, which
have their Weyl points near Fermi energies. See Armitage
et al., 2018, Narang et al., 2020 for more details. Fur-
thermore, in the so-called Kramer-Weyl semimetal,
the Weyl points are located at TRIMs. Therefore, the
Fermi arcs span across the BZ (Chang et al., 2018), and
one could have the QAH state.

1. Fermi arc of surface states

Divide the space into two parts, with the magnetiza-
tion

m(x) < |ts − td| for x < 0, or M−(kz) < 0 (NI)

m(x) > |ts − td| for x > 0, or M−(kz) > 0 (WSM)

and m(x) increases monotonically from one side to the
other. Ignoring the M+(kz) block. The remaining two-
state Hamiltonian for a 2D sub-system is (see Eq. (1.28))

Hkz = h0 +

[
m(x)−

√
t2s + t2d + 2tstd cos(kzd)

]
︸ ︷︷ ︸

Mkz
− (x)

σz.

(1.34)
Similar to the analysis of the edge states of the QWZ
model in Chap. ??, first replace kx by the differential
operator 1

i
∂
∂x . One then solves the following differential

equation to find the edge state,(
Mkz
− (x) v

(
∂
∂x + ky

)
v
(
− ∂
∂x + ky

)
−Mkz

− (x)

)
φkzs = εkzs (ky)φkzs .

(1.35)

ky

E

Surface Brillouin zone

ky

kz

Fermi arc of SS

Fermi arc of SS

Filled SS

Filled SS

µ

FIG. 11 Fermi arc of the SS in a 2D surface BZ. Five slices
of the 1D edge BZ of the 2D kz-subsystem are shown on the
right.

A trial solution that is localized near x = 0 is,

φkzs (x) = e−
1
v

∫ x
0
dx′Mkz

− (x)

(
1

1

)
. (1.36)

One can verify that it is indeed an eigenstate, with eigen-
value εkzs (ky) = vky, which is linear in ky and indepen-
dent of kz.

The energy dispersion of the surface states is a 2D
surface in the 3D BZ. The surface BZ for the [100] surface
is shown in Fig. 11, with 5 slices of the energy dispersion
shown on the right. A 2D subsystem with C1 = 0 is
a trivial 2D insulator, which has no edge state. A 2D
subsystem with C1 = 1 is similar to a 2D quantum Hall
system, which has chiral edge state. The electrons fill up
to a Fermi point in its 1D edge BZ. By connecting these
points from different kz’s, one sees that the SS electrons
of the Weyl semimetal would fill up to a Fermi line (aka
Fermi arc, Wan et al., 2011). For more details, see Yang
et al., 2011 and Okugawa and Murakami, 2014. Also see
Potter et al., 2014 for an illuminating analysis of the SS
and the Fermi arc.

Experimentally, transition metal monopnictides such
as TaAs (Lv et al., 2015; Xu et al., 2015b), and NbAs
(Xu et al., 2015a) are among the first to be confirmed as
Weyl semimetals, and their Fermi arcs observed.

2. Property of Fermi arc

Using a two-band model with a pair of Weyl nodes, one
can explore some properties of the Fermi arc in details
(Okugawa and Murakami, 2014). In Fig. 12(a), we see
the energy dispersion near the Weyl points of the bulk
states. If the Weyl semimetal has boundaries, then there
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z
z

z z

FIG. 12 (a) Weyl points from the bulk energy bands. (b)
Energy dispersions of the bulk states and the surface states.
(c) Two Fermi seas are connection by Fermi arcs. (d) At
higher chemical potential, two Fermi seas merge as one. Fig
from Okugawa and Murakami, 2014.

are 2D energy sheets of surface states stretching between
two Weyl nodes (Fig. 12(b)). The SSs from the top and
the bottom boundaries have opposite slopes along the ky
direction. When the chemical potential µ is at the energy
of the Weyl-point, it would cut through the 2D energy
sheet of the SS, forming a Fermi arc between two Weyl
points. This is consistent with the analysis in previous
Section.

If µ is away from, e.g., higher than, the energy of the
Weyl points, then there are puddles of Fermi sea around
the Weyl points. These puddles are connected by Fermi
arcs (Fig. 12(c)). Furthermore, the Fermi arc would be
tangent to the edge of the Fermi sea (Haldane, 2014).

When µ gets higher, the two puddles would eventually
merge with each other (Fig. 12(d)). Such a change of the
topology of the Fermi surface is sometimes referred to as
a Lifshitz transition.

E. Beyond linear Weyl point

A Weyl point with linear dispersion is the simplest
form of the point degeneracy. Other types of degeneracy
could also be related to topology and have some interest-
ing physical effect. Here I list some of the generalizations
beyond this simplest case:

1. Near a degenerate point, the energy dispersion can
be quadratic, cubic, or of higher orders. This would gen-
erate higher topological charges, and multiple Fermi arcs
between Weyl points.

2. The Dirac cone can be slightly slanted, or highly
slanted to the degree that one Fermi level can cut through
both cones. This is called type-II Weyl fermion.

3. Near a degenerate point, there could be a cross-
ing between 3 levels (spin-1 Weyl fermion), 4 levels with
nonzero topological charge (spin 3/2 Weyl fermion), or
more.

4. Beyond point degeneracy, one could have nodal line,
nodal loop, nodal chain (connected loops), linked nodal
loops (no contact between loops), or nodal plane. In
general, an electron circling a nodal line would acquire a
Berry phase π.

Obviously, mixed types of degeneracy are also possi-
ble. For example, a three-level crossing with quadratic
dispersion. There are numerous works exploring these
possibilities. One may see Lv et al., 2021 and the
references therein for some more details.

Exercise
1. Instead of breaking TRS, one can break the SIS of the
Burkov-Balent model, for example, by unbalancing the
top-bottom layers of the TI slabs. That is, by adding a
term V0τz to the Hamiltonian (ts,d > 0),

H = τzh0 + V0τz

+ tsτx + td(e
−ikzdτ+ + eikzdτ−), (1.37)

where h0 = v(σ × k⊥) · ẑ.
(a) Given the SI operator Π = τx, show that the Hamil-
tonian with V0 = 0 has SIS, ΠH(k)Π−1 = H(−k), while
V0 breaks it.
(b) Switch from the basis τ ⊗ σ to the basis σ ⊗ τ ,
perform a rotation in τ -space to block-diagonalize the
Hamiltonian, then find out the eigenvalues εσz± of H.
2. Following Prob. 1, (a) show that when ts = td, the
middle two bands touch at a circle of line degeneracy at
kz = π/d. Such a degeneracy requires the fine-tuning of
ts and td, and therefore is not robust.
(b) Break the rotational symmetry around kz by having

ts,d = t0s,d + t′s,dk
2
x (1.38)

= t0s,d + t′s,dk
2
⊥ cos2 θ. (1.39)

Show that, when ts = td, there are point degeneracies at

cos 2θ =
2(t0s − t0d)
k2⊥(t′d − t′s)

− 1. (1.40)

(c) The multilayer structure is a normal insulator when
t0s > t0d. Assume t′s > t′d, decrease the value of t0s and
investigate the creation and annihilation of Weyl points.
(Ref: Halász and Balents, 2012)
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