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I. SUPERCONDUCTOR PAIRING WITH SPIN

In either the s-wave superconductor or the spinless p-
wave superconductor, the electron spin does not play an
explicit role. We now consider superconducting phases
in which the spin degree of freedom does play a role.

A. 4-component Nambu formulation

To fully accommodate the particle/hole and spin-
up/down degrees of freedom, we choose the basis,

(
ψk
ψ†−k

)
=


ck↑
ck↓
c†−k↑
c†−k↓

 , (1.1)

in which ψk ≡ (ck↑, ck↓)
T , and the T in (ψ†−k)T is omit-

ted. I will henceforth call this as the type-I basis.
Another type of basis is also used, which I will call it

as the type-II basis,

(
ψk
ψ̄†−k

)
=


ck↑
ck↓
c†−k↓
−c†−k↑

 , (1.2)

where ψ̄†−k = iσyψ
†
−k = (c†−k↓,−c

†
−k↑)

T . It is connected
with the type-I basis via an unitary transformation,(

ψk
ψ̄†−k

)
= S

(
ψk
ψ†−k

)
, S =

(
1 0
0 iσy

)
, (1.3)

and S†S = SS† = 1.
The earlier 2-component formulation of the BCS the-

ory can be extended to 4-component. Under the
type-II basis, we have

H =
1

2

∑
k

(ψ†k, ψ̄−k)

(
εk ∆k

∆†k −ε−k

)(
ψk
ψ̄†−k

)
(1.4)

=
1

2

∑
k

(c†k↑c
†
k↓c−k↓ − c−k↑)

×

 εk 0 ∆11 ∆12

0 εk ∆21 ∆22

∆∗11 ∆∗21 −ε−k 0
∆∗12 ∆∗22 0 −ε−k




ck↑
ck↓
c†−k↓
−c†−k↑

(1.5)

FIG. 1 A-phase and B-phase in the phase diagram of He-3.

Note that for the s-wave SC (Chap ??),

∆k = ∆0

(
1 0
0 1

)
. (1.6)

For the spinless p-wave SC considered so far, for example,
the 2D p-wave SC in Chap ??,

∆k = 2∆0(kx + iky)

(
1 0
0 −1

)
. (1.7)

In the two cases above, there is no coupling between (1,3)
components and (2,4) components. In fact, the (2,4)
components of the states are redundant. You can ver-
ify that they just duplicate the physics described by the
(1,3) components.

In general, the gap function can be expanded as,

∆k = d0(k) + d(k) · σ, (1.8)

where dk is sometimes called as the order-parameter
vector. For example, one can have (d0 = 0),

polar phase dk = ∆0(0, 0, kz), (1.9)

ABM phase (A−phase) dk = ∆0(0, 0, kx + iky),(1.10)

BM phase (B−phase) dk = ∆0(kx, ky, kz). (1.11)

The A-phase and the B-phase can be found in He-3 (see
Fig. 1). The structures of these energy gaps are illus-
trated in Fig. 2. One can see Chap 3 of Vollhardt and
Wolfle, 1990 for more details. The A-phase is chiral and
breaks TRS, while the B-phase is helical and preserves
TRS (see next chap).
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FIG. 2 The energy gap for (a) polar phase with d = (kx, 0, 0),
(b) A-phase, and (c) B-phase. The polar phase has nodal line
in both 2D and 3D. The A-phase is fully gapped in 2D, but
has nodal points in 3D. The B-phase is fully gapped in both
2D and 3D. See Mackenzie and Maeno, 2000.

Using the type-I basis, we have

H =
1

2

∑
k

(ψ†k,ψ−k)

(
εk ∆̄k

∆̄†k −ε−k

)(
ψk
ψ†−k

)
(1.12)

=
1

2

∑
k

(c†k↑c
†
k↓c−k↑c−k↓)

×


εk 0 ∆̄11 ∆̄12

0 εk ∆̄21 ∆̄22

∆̄∗11 ∆̄∗21 −ε−k 0
∆̄∗12 ∆̄∗22 0 −ε−k




ck↑
ck↓
c†−k↑
c†−k↓

 ,(1.13)

where ∆̄ = ∆iσy, or

∆̄ =

(
d0 + dz dx − idy
dx + idy d0 − dz

)
iσy (1.14)

=

(
−dx + idy d0 + dz
−d0 + dz dx + idy

)
. (1.15)

For singlet pairing, one has d0(−k) = d0(k),d(k) = 0;
for triplet pairing, d0(k) = 0,d(−k) = −d(k). That is,
for singlet pairing, ∆̄(−k) = ∆̄(k); for triplet pairing,
∆̄(−k) = −∆̄(k). Therefore,

∆̄(−k) = −∆̄T (k), or ∆̄†(−k) = −∆̄∗(k) (1.16)

for both types of pairing. Note that this is not true for
∆(k).

1. Dirac Hamiltonian

If we let

εk = mc2; d0 = 0,dk = c~k, (1.17)

then under type-I basis (see Eq. (1.4)),

H(k) =

(
mc2 c~k · σ
c~k · σ −mc2

)
(1.18)

= c~k ·α+mc2β, (1.19)

where

α =

(
0 σ
σ 0

)
, β =

(
1 0
0 −1

)
. (1.20)

This is the Dirac Hamiltonian in momentum space (and
in the Dirac representation), which is similar to that of
the BM phase of He-3.

For reference, if one switches to type-II basis, then in
Eq. (1.19),

α =

(
0 σiσy

−iσyσ 0

)
, β =

(
1 0
0 −1

)
. (1.21)

2. Symmetry of gap function

Here we offer more details about the gap function and
its symmetries (Sigrist and Ueda, 1991). This part can
be skipped, if you are not familiar with the language of
second quantization.

Using second quantization, the interaction between
Cooper pairs is described as,

V =
1

2

∑
k,k′

Vs1s2s3s4(k,k′)c†ks1c
†
−k,s2c−k′s3ck′s4 ,(1.22)

Vs1s2s3s4(k,k′) = 〈ks1,−ks2|V| − k′s3,k
′s4〉, (1.23)

where V = V(r− r′) is the potential energy of two-body
interaction. Since the fermion operators anti-commute,
one can show that,

Vs2s1s3s4(−k,k′) = −Vs1s2s3s4(k,k′), (1.24)

Vs1s2s4s3(k,−k′) = −Vs1s2s3s4(k′,k). (1.25)

Also, since V is hermitian, one has

V ∗s4s3s2s1(k,k′) = Vs1s2s3s4(k′,k). (1.26)

In the mean-field approximation,

VMF =
1

2

∑
k,k′

Vs1s2s3s4(k,k′)〈c†ks1c
†
−k,s2〉c−k′s3ck′s4

+
1

2

∑
k,k′

Vs1s2s3s4(k,k′)c†ks1c
†
−k,s2〈c−k′s3ck′s4〉,(1.27)

where 〈· · · 〉 is a quantum statistical average over many-
body states. The gap function is defined as,

∆̄ss′(k) =
∑
k′

Vss′s3s4〈c−k′s3ck′s4〉. (1.28)
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Thus,

VMF =
1

2

∑
k

∆̄∗s′s(k)c−k′sck′s′ +
1

2

∑
k

∆̄ss′(k)c†ksc
†
−ks′ .

(1.29)
These are the off-diagonal terms in Eq. (1.12).

Using the symmetry in Eq. (1.24), we have

∆̄ss′(−k) =
∑
k′

Vss′s3s4(−k,k′)〈c−k′s3ck′s4〉 (1.30)

= −
∑
k′

Vs′ss3s4(k,k′)〈c−k′s3ck′s4〉 (1.31)

= −∆̄s′s(k). (1.32)

This is Eq. (1.16). From this general argument, one
can see that Eq. (1.16) is valid for any type of pairing
(s, p, d · · · ) and their mixings.

B. Bogoliubov-Valatin transformation

We now solve the eigen-energies and eigenstates of the
4-component Hamiltonian. For the singlet case, dk =
0, and it’s basically just two copies of the 2-component
s-wave BdG equations discussed earlier. Therefore, we
focus only on the triplet case (d0 = 0). Furthermore,
we consider only the unitary state. That is (for both
type-I and type-II basis), the state with a gap function
whose square is proportional to an unitary matrix,

∆k∆†k = ∆̄k∆̄†k = αk1. (1.33)

Since

∆̄k∆̄†k = dk · d∗k + idk × d∗k · σ, (1.34)

an unitary state has

αk = |dk|2, dk × d∗k = 0. (1.35)

This is so if, and only if, d(k) = f(k)n̂(k), where n̂ is a
real vector. The SC phases in Eqs. (1.9),(1.10),(1.11) all
belong to this class of states.

Note: For a non-unitary state, distributions of spin-
up and spin-down electrons are not everywhere balanced
in momentum space, and time-reversal symmetry is bro-
ken. Also, the excitation spectrum is no longer doubly
degenerate (Sigrist and Ueda, 1991).

Recall that in Eq. 1.12, the matrix Hamiltonian is

H(k) =

(
εk ∆̄k

∆̄†k −εk

)
, (1.36)

If H(k)Φk = EkΦk, then

H2(k)Φk =

(
ε2k + ∆̄k∆̄†k 0

0 ε2k + ∆̄†k∆̄k

)
Φk (1.37)

= E2
kΦk. (1.38)

For the unitary state, ∆̄k∆̄†k = ∆̄†k∆̄k = |dk|2. There-
fore, the eigen-energies can be easily solved,

E±k = ±
√
ε2k + |dk|2, (1.39)

which are doubly degenerate (see Fig. 2) for the gap
structures.

Write

Φk =

(
uk
vk

)
, (1.40)

where uk,vk are 2-component column vectors. Then,
for positive eigen-energy E+

k , one has the eigenvectors
(Nomura, 2013; Sigrist and Ueda, 1991),

(
u
(1)
k

v
(1)
k

)
= Ak

 Ek + εk
0

∆̄∗11(k)
∆̄∗12(k)

 , (1.41)

(
u
(2)
k

v
(2)
k

)
= Ak

 0
Ek + εk
∆̄∗21(k)
∆̄∗22(k)

 , (1.42)

where Ak = [2Ek(Ek + εk)]−1/2. For negative eigen-
energy E−k , one has

(
u
(3)
k

v
(3)
k

)
= Ak

 −∆̄11(k)
−∆̄21(k)
Ek + εk

0

 =

(
v
(1)∗
−k

u
(1)∗
−k

)
,(1.43)

(
u
(4)
k

v
(4)
k

)
= Ak

 −∆̄12(k)
−∆̄22(k)

0
Ek + εk

 =

(
v
(2)∗
−k

u
(2)∗
−k

)
.(1.44)

Before the Bogoliubov-Valatin (BV) transformation,
the basis is,

Ψk =

(
ψk
ψ†−k

)
=


ck↑
ck↓
c†−k↑
c†−k↓

 . (1.45)

The basis that diagonalizes the Hamiltonian is written
as,

Γk =

(
γk
γ†−k

)
=


bk↑
bk↓
b†−k↑
b†−k↓

 . (1.46)

They are connected by an unitary transformation,

Ψk = UkΓk =

(
uk v∗−k
vk u∗−k

)
Γk, (1.47)
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in which each column is an eigenvector. For exmple, the
elements of 2× 2 matrices uk, vk are,

uk =
(
u
(1)
k u

(2)
k

)
(1.48)

vk =
(
v
(1)
k v

(2)
k

)
. (1.49)

After the BV transformation, the Hamiltonian is diag-
onal,

HD(k) = U†kH(k)Uk, (1.50)

and

H =
1

2

∑
k

Γ†kHD(k)Γk (1.51)

=
1

2

∑
ks

(E+
k b
†
ksbks + E−k b−ksb

†
−ks) (1.52)

=
∑
ks

E+
k b
†
ksbks + const. (1.53)

The BV transformation matrix for type-II basis can be
found as follows: Before the transformation,

Ψ̄k =

(
ψk
ψ̄†−k

)
= S

(
ψk
ψ†−k

)
, (1.54)

where S is given in Eq. (1.3). After the transformation,

Γ̄k =

(
γk
γ̄†−k

)
= S

(
γk
γ†−k

)
. (1.55)

It follows from Eq. (1.47) that, for type-II basis,

Ψ̄k = SUkS−1Γ̄k (1.56)

=

(
uk v∗−k(−iσy)

iσyvk σyu∗−kσy

)
Γ̄k, (1.57)

where uk, vk are defined in Eqs. (1.48),(1.49).

C. Real space formulation

Without SC pairing, the real-space Hamiltonian is,

h0 =
∑
s

∫
dDrψ†s(r)h0(r)ψs(r), (1.58)

h0 =
p2

2m
+ V (r) + ασ × p ·E + · · · − µ (1.59)

The interaction term is

V =
1

2

∑
ss′

∫
dDrdDr′V(r− r′)ψ†s(r)ψ†s′(r

′)ψs′(r
′)ψs(r).

(1.60)
With the mean-field approximation, one has

VMF =
1

2

∑
ss′

∆ss′(r, r
′)ψ†s(r)ψ†s′(r

′) + h.c, (1.61)

where

∆ss′(r, r
′) ≡ V(r− r′)〈ψs′(r′)ψs(r)〉. (1.62)

Therefore, under type-I basis (Chamon et al., 2010),

Ψ(r) = (ψ↑, ψ↓, ψ
†
↑, ψ
†
↓)
T ,

H0 =

(
h0(r) 0

0 −h∗0(r)

)
, (1.63)

∆4×4(r, r′) =

(
0 ∆̄(r, r′)

∆̄†(r, r′) 0

)
, (1.64)

where ∆̄ = ∆iσy, and the full Hamiltonian is

H =
1

2

∫
dDrdDr′Ψ†(r)[H0(r)δ(r−r′)+∆4×4(r, r′)]Ψ(r′).

(1.65)
Under type-II basis (Leijnse and Flensberg, 2012),

Ψ(r) = (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)
T , and

H0 =

(
h0(r) 0

0 −σyh∗0(r)σy

)
, (1.66)

∆4×4(r, r′) =

(
0 ∆(r, r′)

∆†(r, r′) 0

)
. (1.67)

D. TR and PH symmetries

1. Time-reversal transformation

For type-I basis, the TR operator for p-wave SC is
(Bernevig and Hughes, 2013)

T = 1⊗ iσyK =

(
iσy 0
0 iσy

)
K, (1.68)

in which iσyK operates in the spin subspace, and T2 =
−1. The state transforms as,(

uk
vk

)
→ T

(
uk
vk

)
=

(
iσyu

∗
k

iσyv
∗
k

)
(1.69)

The Hamiltonian transforms as,

TH(k)T−1 = H(−k). (1.70)

What about the TR operator for type-II basis? From
the relation Ψ̄k = SΨk, and

Ψk → TΨk, (1.71)

one can infer that,

Ψ̄k → STS−1Ψ̄k. (1.72)

Therefore, from Eqs. (1.54) and (1.68), the TR operator
for type-II basis is

STS−1 =

(
iσy 0
0 iσy

)
K, (1.73)

the same as that of type-I basis.
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2. Particle-hole transformation

We will focus on the PH transformation of p-wave
state. A PH operator maps a positive energy state to a

negative energy state. For example, it maps (u
(1)
k ,v

(1)
k )T

in Eq. (1.41) to (u
(3)
k ,v

(3)
k )T in Eq. (1.43). That is,(

u
(1)
k

v
(1)
k

)
→ P

(
u
(1)
k

v
(1)
k

)
=

(
u
(3)
−k

v
(3)
−k

)
. (1.74)

Therefore, for type-I basis,

P =

(
0 1
1 0

)
K = τxK ⊗ 1. (1.75)

This applies to the other pair, (u
(2)
k ,v

(2)
k )T in Eq. (1.42)

maps to (u
(4)
−k,v

(4)
−k)T in Eq. (1.44) as well. One can check

that, P2 = 1, and

PH(k)P−1 = −H(−k). (1.76)

The PH operator for type-II basis is

SPS−1 =

(
0 −iσy
iσy 0

)
K = τy ⊗ σyK. (1.77)

A Majorana fermion state satisfies PΨ = Ψ. That is,
for type-I basis, in real-space,(

v∗(r)
u∗(r)

)
=

(
u(r)
v(r)

)
. (1.78)

Thus, a Majorana fermion state requires only half of the
degrees of freedom,

ΨM (r) =

(
u(r)
u∗(r)

)
(1.79)

Its time-reversed state is

TΨM (r) =

(
iσyu

∗(r)
iσyu(r)

)
, (1.80)

which is an energy eigenstate if the Hamiltonian has TRS.
Since |TΨM (r)|2 = |ΨM (r)|2 = 2u† · u, ΨM and TΨM

have the same probability distribution in space. There-
fore, to have an isolated MF not overlapped by its TR
partner, TRS needs be broken (Leijnse and Flensberg,
2012).

For reference, for type-II basis, a Majorana state is

ΨM (r) =

(
u(r)

iσyu
∗(r)

)
. (1.81)

Its time-reversed state is

TΨM (r) =

(
iσyu

∗(r)
u(r)

)
, (1.82)

which again has the same spatial distribution as ΨM (r).
3. Symmetry transformation of field operator

The TR operator and the PH operator mentioned so
far operate in the single-particle Hilbert space. They are
anti-unitary operators,

T = UTK, P = UPK, (1.83)

where UT and UP are unitary operators. It is known that
T2 = −1 for fermions, P2 = −1 for s-wave SC, P2 = 1
for p-wave SC, and

TH(k)T−1 = H(−k), (1.84)

PH(k)P−1 = −H(−k). (1.85)

We now introduce the TR and PH operators, T and P ,
for field operators ψα(r). They are required to operate
in the following way (Ryu et al., 2010),

TψαT
−1 =

∑
β

(UT )αβψβ , (1.86)

PψαP
−1 =

∑
β

(U∗P )αβψ
†
β . (1.87)

While the TR operator T remains anti-unitary, the PH
operator P now becomes unitary (while the chiral op-
erator becomes anti-unitary)! If a system has TRS and
PHS, then

THT−1 = H, (1.88)

PHP−1 = H. (1.89)

Both operators commute with the Hamiltonian. Also,
T 2 = ±1, P 2 = ±1, depending on the symmetries. For
more details, see p.6 of Ryu et al., 2010.

Exercise:
1. Show that the eigenvectors of the 4 × 4 Hamiltonian
matrix in Eq.(1.36) (with d0 = 0) are Eqs. (1.41),(1.42),
(1.43),(1.44). To get the eigenvector in Eq. (1.41), for

example, one can choose u
(1)
k = (1, 0)T , solve for v

(1)
k ,

then normalize the eigenvector.
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