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I. 2D p-WAVE SUPERCONDUCTOR

We now consider spinless p-wave SC in 2D. Two pi-
oneering works on this topic are Read and Green, 2000
and Ivanov, 2001, from which many of the discussions in
this Chap are based. Spinful p-wave SC in 1D and higher
dimensions will be investigated in later chapters.

A. Lattice model

Consider the following lattice model with real ∆0,

H =
∑
mn

[
−t(c†m+1,ncmn + c†m,n+1cmn) + h.c.

− (µ− 4t)c†mncmn (1.1)

+ ∆0c
†
m+1,nc

†
mn + i∆0c

†
m,n+1c

†
mn + h.c.

]
.

With the Fourier transform,

c†mn =
1√
N

∑
k

ei(kxm+kyn)c†kxky , (1.2)

where N is the total number of lattice sites, one gets (c~k
is simply written as ck)

H =
1

2

∑
k

(c†k c−k)H(k)

(
ck
c†−k

)
, (1.3)

where

H =

(
ε(k) 2i∆0(sin kx + i sin ky)

−2i∆0(sin kx − i sin ky) −ε(k)

)
,

ε(k) = −2t(cos kx + cos ky)− (µ− 4t). (1.4)

The Hamiltonian matrix H(k) has the same form as
that of the QWZ model in Eq. (??). One only needs to
identify

2t = tQWZ , µ = −m, and 2i∆0 = λ. (1.5)

For example, the QWZ model is gapless at m =
0,−2,−4. Therefore, here the gap closes at µ = 0, 2, 4.

Choose t = 1/2, then

H(k) =

≡M(k)︷ ︸︸ ︷
(2− µ− cos kx − cos ky) τz

− 2∆0(sin kxτy + sin kyτx). (1.6)

µ

FIG. 1 The energy dispersion of the chiral edge state inside
a SC gap.

It has the eigen-energies,

E±(k) = ±
√
M(k)2 + 4∆2

0(sin2 kx + sin2 ky). (1.7)

Based on our understanding of the QWZ model, we
know that the system has 3 distinct quantum phases:
when µ < 0 or µ > 4, it is a trivial phase. When 0 <
µ < 2, it is a topological SC phase. When 2 < µ < 4, it
is another topological SC phase with opposite chirality.

The topological number is characterized by the first
Chern number. Given

H(k) = h(k) · σ, (1.8)

one has

C1 =
1

4π

∫
BZ

d2k
1

h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.9)

However, since the electric charge is not conserved, the
topological phases have no quantized Hall conductance.

B. Edge state

For simplicity, we study the edge state in the contin-
uum limit. In the small-k limit, the Hamiltonian matrix
reduces to

H(k) =

(
tk2 − µ 2i∆0(kx + iky)

−2i∆0(kx − iky) −tk2 + µ

)
. (1.10)

Note: The second-quantized Hamiltonian is

H =
∑
s=±

εkc
†
kscks + 2ik∆0(eiφkc†k↑c

†
−k↓ − h.c.), (1.11)

where εk = tk2 − µ, φk = ∠(k, x̂). This will be referred
to in a later chapter.

Assume the chemical potential has a profile similar
to µ(x) = tanhx, then the topological SC occupies the
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space with x > 0. Because of the translation symmetry
along y, the eigenstate is of the form ψ(x)eikyy. We now
substitute kx by (1/i)(d/dx), neglect k2 terms, and solve
for(

−µ 2i∆0

(
1
i
d
dx + iky

)
−2i∆0

(
1
i
d
dx − iky

)
µ

)
ψ(x) = εkyψ(x).

(1.12)
Again it’s easier to make a guess at the edge state. Try

ψ(x) = e−
1

2∆0

∫ x
0
dx′µ(x′)ψ0, (1.13)

then we will get

ψ0 =

(
1
−1

)
, (1.14)

with the eigen-energy εky = 2∆0ky (see Fig. 1).
The energy dispersion of the edge state is roughly lin-

ear at small k. Furthermore, it is chiral. Therefore, the
2D p-wave SC is sometimes called as the chiral super-
conductor.

The Bogoliubov QP for the edge state is

γky =

∫
d2r

[
u∗(r)ψ(r) + v∗(r)ψ†(r)

]
(1.15)

=

∫
d2reikyye−

1
2∆0

∫ x
0
dx′µ(x′)

[
e−iπ/2ψ + eiπ/2ψ†

]
,

where we have removed an overall phase eiπ/2. Therefore,

γ†−ky = γky . (1.16)

When ky = 0, γ†0 = γ0 and the zero mode is a Majorana
mode. However, not being gapped from edge states at
higher energy, it can be easily damaged by thermal effect.
In the next Sec, we’ll see that the Majorana mode inside
a vortex is gapped, thus can avoid this problem (to some
extent).

C. Vortex and its bound states

In the Ginzberg-Landau (GL) theory of SC, the SC
state is described by a macroscopic wave function Ψ(r).
This effective theory works near the SC transition, and
can be derived from the microscopic BCS theory. In fact,
one can show that Ψ(r) ' ∆(r) (e.g., see Fetter and
Walecka, 1971), differing only by a multiplicative factor.
The current density in the GL theory is given as (q∗ =
−2e,m∗ = 2m),

j =
q∗

2m∗

[
Ψ∗
(
~
i
∇− q∗A

)
Ψ + c.c.

]
(1.17)

= − e~
2mi

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2e2

m
|Ψ|2A. (1.18)

Therefore, if ∆(r) = |∆(r)|e−iξ(r), where ξ(r) is a single-
valued function, then

j ∝ ~
2e
∇ξ −A. (1.19)

The phase of ∆ is adjustable via a gauge transforma-
tion. For example, if

∆ → ∆′ = ∆eiχ, (1.20)

then ξ → ξ′ = ξ − χ, (1.21)

and A → A′ = A− ~
2e
∇χ. (1.22)

The current density is gauge invariant, as it should be.
Also, you can check that the BdG equation is invariant
under the following gauge transformation,(

u
v

)
→
(
u′

v′

)
=

(
eiχ/2u
e−iχ/2v

)
. (1.23)

Far away from a vortex, the circulating current density
j(r) drops to zero, such that for a large loop C,∮

C

dr · j = 0. (1.24)

Therefore, ∮
C

dr ·A = − ~
2e

[ξ(2π)− ξ(0)] (1.25)

=
h

2e
n, n ∈ Z, (1.26)

in which ξ(2π) − ξ(0) = 2πn, since ξ is single-valued.
Thus the magnetic flux through a SC vortex needs be
quantized in units of h/2e. In the case of n = 1, one can
choose ξ = θ, the polar angle.

We now choose χ = ξ (= nθ) to remove the SC phase,
so that ∆′ = |∆|. Consequently, after a 2π rotation of θ,(

u′

v′

)
=

(
eiξ/2u
e−iξ/2v

)
(1.27)

= (−1)n
(
u
v

)
. (1.28)

To avoid possible mis-steps, one can add a “branch-cut”
emanating from the vortex, so that after circling a vortex
(and crossing the branch-cut) once, a phase factor (−1)n

is added.
We now study the bound states inside a vortex. First

write the BdG equation in polar coordinate. Recall that

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
, (1.29)

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
. (1.30)

Therefore,

i(kx + iky) → ∂

∂x
+ i

∂

∂y
(1.31)

= eiθ
(
∂

∂r
+
i

r

∂

∂θ

)
. (1.32)
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Neglecting k2 terms, then we have (∆0(r) ∈ R),(
−µ 2∆0e

iθ
(
∂
∂r + i

r
∂
∂θ

)
2∆0e

−iθ (− ∂
∂r + i

r
∂
∂θ

)
µ

)(
un
vn

)
= En

(
un
vn

)
. (1.33)

One can verify that the following is an zero-energy so-
lution,(

u0

v0

)
=

i√
r
e
− 1

2

∫ r
0
dr′ µ

∆0(r′)︸ ︷︷ ︸
≡ig(r)

(
−eiθ/2
e−iθ/2

)
. (1.34)

The corresponding Bogoliubov QP is,

γ0 =

∫
d2r

[
u∗0(r)ψ(r) + v∗0(r)ψ†(r)

]
(1.35)

=

∫
d2r ig(r)

[
e−iθ/2ψ(r)− eiθ/2ψ†(r)

]
.

Such a zero-mode bound state is a Majorana mode, γ†0 =
γ0.

A few remarks: First, for a p-wave SC, near the core of
a vortex, En ' n~ω0 at low energy, where ω0 ' ∆2

0/εF �
∆0, and n is the angular momentum of the QP (see,
e.g., Tewari et al., 2007). However, for a s-wave SC,
En ' (n+1/2)~ω0 for low-energy bound states (see p. 155
of de Gennes, 1989). The lowest one has energy ~ω0/2,
thus there is no zero mode.

Second, candidate host materials for Majorana
fermions are: the ruthenate (Sr2RuO4), which is a p-
wave SC with spin, the A-phase of superfulid He-3, and
the fractional quantum Hall phase with filling fraction
ν = 5/2 (the Moore-Read state). It is also possible to
find them in the hybrid structure of 3D TI+s-wave SC
(Fu and Kane, 2008), or 2D Rashba+s-wave SC (Alicea,
2010; Sau et al., 2010).

D. Topological qubit

Like the MF in a Kitaev chain, two MFs (γ1, γ2) in the
p-wave SC can store one qubit of information:

f1 =
1

2
(γ1 + iγ2), (1.36)

f†1 =
1

2
(γ1 − iγ2), (1.37)

→ f†1f1 =
1 + iγ1γ2

2
∼ 0, 1. (1.38)

Recall that −iγ1γ2 is the fermion parity operator. Such
a qubit composed of 2 spatially separated MFs is robust
again local decoherence.

In order to understand how to manipulate such qubits,
we now consider a system with multiple MFs. For a MF
located at Rj , we have (Nayak et al., 2008),

γj =

∫
d2r

[
hj(r)e−iθj/2+iΓj/2ψj + h∗j (r)eiθj/2−iΓj/2ψ†j

]
,(1.39)

(a)

(b)

(c)

γ1 γ2

γ1 γ2

γ1 γ2

FIG. 2 (a) Attach a branch cut to each vortex. The position
of the branch cut is gauge dependent. (b) Exchange the lo-
cations of 2 MFs by moving γ2 counter-clockwise around γ1.
(c) Exchange the locations of 2 MFs by moving γ2 clockwise
around γ1.

where hj(r) = ig(r−Rj), and

θj = arg(r−Rj), (1.40)

Γj =
∑
` 6=j

arg(Rj −R`). (1.41)

The phase Γj arises because of the anti-periodicity in
Eq. (1.28). For example, consider only 2 MFs. If we move
γ2 around γ1 once, then Γ2 = arg(R2 −R1) changes by
2π, and γ2 changes sign. To register such a change of
sign, we add a branch cut to each vortex, as shown in
Fig. 2(a).

1. Braiding 2 Majorana fermions

To exchange the locations of 2 MFs, γ1 and γ2, we
can move γ2 around γ1 in 2 ways (see Fig. 2(b),(c)).
The results are different, because of the branch cut. In
Fig. 2(b), γ2 crossed the branch cut of γ1, and we have

γ1 → γ2, (1.42)

γ2 → −γ1. (1.43)

In Fig. 2(c), γ2 does not cross the branch cut of γ1, but
γ1 crossed the branch cut of γ2, and we have

γ1 → −γ2, (1.44)

γ2 → γ1. (1.45)

For clockwise rotation, we can write

γj → B12γjB
†
12, (1.46)
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(a) (b)

1        2        3 1        2        3

2 3 1 3 1 2

FIG. 3 (a) First exchange γ1 with γ2, then exchange γ2 with
γ3. (b) First exchange γ2 with γ3, then exchange γ3 with γ1.

where

B12 =
1√
2

(1 + γ1γ2) (1.47)

is called the braiding operator.
A full circle is composed of 2 half circles, and

B2
12 = γ1γ2. (1.48)

It follows that,

γj → B2
12γj(B

†
12)2 = −γj . (1.49)

Both MFs change sign since each of them crossed a
branch cut once.

Write the states with fermion numbers 0, 1 as |0〉, |1〉,
then (see Eq. (1.38))

|1〉 = f†1 |0〉, (1.50){
f†1f1|0〉 = 0,

f†1f1|1〉 = |1〉.
(1.51)

Also, {
−iγ1γ2|0〉 = |0〉,
−iγ1γ2|1〉 = −|1〉. (1.52)

It follows that,

B12|0〉 =
1√
2

(1 + i)|0〉 = eiπ/4|0〉, (1.53)

B12|1〉 =
1√
2

(1− i)|1〉 = e−iπ/4|1〉. (1.54)

That is, the braiding operator does not switch the states
|0〉, |1〉, it only shifts the phases of the states.

2. Braiding 4 Majorana fermions

We now consider a 2-qubit system with 4 MFs,

f1 =
1

2
(γ1 + iγ2), (1.55)

f2 =
1

2
(γ3 + iγ4). (1.56)

The basis of the Hilbert space are {|00〉, |01〉, |10〉, |11〉}.
For intra-fermion braiding, we have, for example,

B12|00〉 =
1√
2

(1 + i)|00〉, (1.57)

B34|00〉 =
1√
2

(1 + i)|00〉. (1.58)

For inter-fermion braiding, one has, for example,

B23|00〉 =
1√
2

(1 + γ2γ3)|00〉

=
1√
2

(|00〉+ i|11〉). (1.59)

Note that the fermion parity, n1 + n2 (mod 2), is not
changed by these braidings.

In general, under the basis (|00〉, |01〉, |10〉, |11〉)T ,
these braiding operators can be written as,

B12 = ei
π
4 σz⊗1 =


eiπ/4 0 0 0

0 eiπ/4 0 0
0 0 e−iπ/4 0
0 0 0 e−iπ/4

 ,(1.60)

B34 = e1⊗iπ4 σz =


eiπ/4 0 0 0

0 e−iπ/4 0 0
0 0 eiπ/4 0
0 0 0 e−iπ/4

 ,(1.61)

B23 =
1√
2

 1 0 0 i
0 1 i 0
0 −i 1 0
−i 0 0 1

 . (1.62)

Two braiding operations that act on different fermions
would commute,

[B12, B34] = 0. (1.63)

However,

[Bj−1,j , Bj,j+1] = γj−1γj+1. (1.64)

Because the commutator does not vanish, the order of
braiding matters, as shown in Fig. 3.

Since the braiding operations do not change the
fermion parity. They could only connect |00〉 and |11〉
(or |10〉 and |01〉) in a 2D Hilbert sub-space. That is,
with braiding only, one can only access 1 qubit out of
the two-qubit system. Define the new qubit as,

|0̄〉 ≡ |00〉, |1̄〉 ≡ |11〉, (1.65)

then

B12 = B34 = ei
π
4 τz , (1.66)

B23 = ei
π
4 τx . (1.67)

They rotate a single qubit by an angle π/2 around either
z-axis or x-axis.
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The universal quantum computation cannot be
achieved by braiding operations alone. It requires logical
gates that could change the fermion parity, such as the
Controlled NOT gate,

CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (1.68)

which changes |10〉 to |11〉, and |11〉 to |10〉.
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