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I. REVIEW OF BCS THEORY

Because of the superconducting gap, a superconductor
(SC) is similar to an insulator (from the energy spectrum
point of view). One thing that distinguishes a SC from an
insulator is that the former has particle-hole symmetry
near the gap. The ground state of a bulk SC has a definite
phase, but does not have a definite number of Cooper
pairs (some discussion can be found in Sec. 5.4 of Martin
and Rothen, 2002). Therefore, adding an electron to a SC
is the same as removing an electron (or adding a hole),
as the two processes only differ by a Cooper pair. In this
and following chapters we study the topology of such an
“insulator”.

A. Mean field Hamiltonian

Depending on detailed mechanism, the two electrons in
a Cooper pair can form a spin-singlet (s-wave, d-wave) or
spin-triplet (p-wave). The mean-field BCS Hamiltonian
of a s-wave superconductor is,

HIL{F = ZekCLkaS + Z AkCLTCT—kJ, + Z A;C,kJ/CkT,
k
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where ¢, = h?k%/2m — p, p is the chemical potential,
and Ay is called the gap function. In the following, we
simply write the subscript k as k, so that c4rs and Ay
represent c4yxs and Agy.
Since cps are fermion operators, they satisfy anti-
commutation relations,

{cks,cl,s,} = (1.2)
{Cksack’s’} - O, (13)
For the simplest type of s-wave SC, A, = Ay. In general,
the gap function of s-wave SC has even parity (and no
node), A_j = Ag.
To diagonalize the Hamiltonian, rewrite the first term
of Hy/r as,
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then the Hamiltonian can be written as,
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The Hamiltonian with quadratic fermion operators can
be solved easily. First, diagonalize the 2 x 2 matrix H(k)
with an unitary transformation U,
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where +E;, = £./e7 + |Ag]? are the eigenvalues, and
(ag, By) are the corresponding eigen-vectors. We only

keep the positive excitation energy +Ej.
It can be shown that, for example,

oy \ er + B
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in which N is a constant. After normalization,
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Similarly, for —F,
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For a homogeneous SC, Ap = ¢e®|Ag|. The k-

independent phase ¢ is the SC phase mentioned in the
Introduction.

There is some freedom in choosing the phases of a4
and B1. If one writes (see Eq. (1.9))
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They satisfy the anti-commutation relations (s, s’ = 1, 2),

(Ykss Mo} =

Ok Ossts (1.15
Vs s} = 0. (1.1

)
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The transformation between (cxq, c—g, ) and (Y1, Y—k2)
that preserves the (anti-)commutation relations is called

as the Bogoliubov-Valatin transformation.
When written in new basis,

Hyp

= Yok (5 ) (1) + S
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= ZEk <fy;£1'yk1 + ’)/T_kz"}/_kg) + const. (1.18)
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Note that these quasiparticles (QPs) (vx1,v7—k2) do not
interact with each other (like phonons in a solid with har-
monic vibrations), and that the excitation energy of one
QP is Ey. Each QP has a definite energy, momentum,
and spin, but does not have a definite charge (since it is
a superposition of electron and hole states).

B. Particle-hole symmetry

The eigen-states in Eqgs. (1.11),(1.12) are particle state
and hole state. They can be related by a particle-hole
(PH) transformation P. In next chapter, we will see
that spinless p-wave SC has a Hamiltonian similar to the
one in Eq. (1.1). One only needs to make the follow-
ing changes: 1), Replace (cm,cT_u) by (ck,cT_k). This
is merely a change of subscripts, without affecting the
eigenstate solutions in Egs. (1.11),(1.12). 2), Adopt a
gap function with odd parity, A_ = —Ag.

We now discuss the PH transformations in s-wave SC
and in spinless p-wave SC. First, like the TR operator,
the PH operator P is an anti-unitary operator: to flip
the sign of charge, P(p + eA)P~! = —(p — eA), thus
PiP~1 = —i is required. Second, because of Eq. (1.9), if
A_; = Ay, then one has

U_f = Uk, V_k = Vk. (1.19)
However, if A_; = —Ay, then
U = Uk, V_f = —Vg. (1.20)

For a s-wave SC,

if Y = ( Z: ) has energy Fj,

then Py, = < % ) = ( Uk > has energy — F_j,.

Uk U—k

Therefore, we choose

P= ( 0 -1 > K = —it K, (1.21)
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where K is the operation of complex conjugation.
For a spinless p-wave SC,

if Y = ( Z: ) has energy Fj,

then Py, = < ZZ ) = ( _uv__kk ) has energy — F_y,.

Therefore, we choose

01
P:(1 O)K:@K.

(1.22)
Note that for a s-wave SC, P2 = —1; for a p-wave SC,
P?2=1.
If a system has particle-hole symmetry, then
PH(Xk)P! = —H(-k). (1.23)
You can verify that the 2 x 2-matrix H(k) in Eq. (1.5),
and its p-wave version with A_; = —Ag, do have the PH
symmetry.
If one writes P = UpK, where Up is an unitary oper-
ator, then

UpH*(k)Up' = —H(-k). (1.24)
In comparison, under TR transformation,
TH(K)T ! = H(-k). (1.25)

If one writes T' = Ur K, where Uy is an unitary operator,
then

UrH*(k)U; ' = H(—k). (1.26)
Recall that for a particle with half-integer spin, 7? = —1;
for a particle with integer spin, 72 = 1.

Note: for an anti-unitary operator like T or P, its
square can only be +1. The proof is as follows. Applying
either of the transformation twice, the system should go
back to the state before the transformation, differing at
most by a phase factor, Q% = z,|z| = 1. It follows that,

2Q =Q*Q = QQ° (1.27)
= Qz=zQ, (1.28)
— 2z = Z=41. (1.29)

C. Real space formulation

To deal with SC systems without spatial homogene-
ity (e.g., those with edges, vortices ... etc), one needs
the mean-field Hamiltonian in real space (see Chap 5 of
de Gennes, 1989). For s-wave SC, it is

Hor = [ @8 S wltob, + Ae)ofo] + A" ()i
s=1,)
(1.30)



where
Hy = % (p+eA) +V(r) - p, (1.31)
V(r) is an external potential, and
{ws (I‘), ws’ (r/)T} = 5(1‘ - rl)éss’a (132>
{ws(r)ad}s/(r/)} = 0. (1.33)

We wish to diagonalize H.;; using a generalized
Bogoliubov-Valatin transformation,

i) = 3 (un)mr = vl ), (134)

n>0

> (a0t +unh,) . (135)

n>0

] (r)

Note: One could start with a restricted version without
the summation, but the superposition helps lowering the
free energy and produces a more accurate solution (p.259
of Ketterson and Song, 1999). Choose u, and v, such
that

Hepp = Z En'}/;rbs”)/n& (1'36)
and demand that
{’Yns,’}/l/s/} = Opn/0ss’, (137>
{’Yns, 'Yn’s’} = 0. 138)
This leads to the equations of motion,
Zh7n5 = [’YnsyHeff] = En’Ynsa (139)
Zh’ﬂw = [Vls’Heff} = 7E7l7;:s' (14())

Note that it is commutators, instead of anti-commutators
in the equations of motion, so the following identity helps,

[a,bc] = {a,b}c — b{a,c}. (1.41)
On the other hand, one has

il (r) = [ (r), Hegs] = Hotbr (r) + A(r)y] (r)(1.42)
iy (r) = [y (r), Hegs] = Hogy(r) — Alr)yl

(r)(1.43)

Rewrite ¢’s using 7’s, and compare with
Egs. (1.39),(1.40), we get

HOun(r) + A(r)vn(r) = Enun(r)7 (144)

Hjv,(r) — A*(r)un(r) = —Epv,(r).  (1.45)

These are called the Bogoliubov-de Gennes (BdG)
equations. They can be written in matrix form,

Hy A Up\ Up,
(& ) () == (0n):

The * for Hy is required if there is vector potential A.

(1.46)

That is, the coefficients (u,,v,) turn out to be eigen-
states of the Hamiltonian. Thus, they are orthonormal
to each other,

/ dr (u:(r),v:(r))<z":g))> = G, (1.47)

* " —v’ (r
/d3r (ur(r), v} (r)) ( u*?(r)) ) = 0.
The first equation is for particle-state and particle-state;

the second for particle-state and hole-state. With the
help of Egs. (1.47),(1.48), we have,

v = [ @ () + v @ulw), (149
= / 2B (—vn(r)wT(r)—l—un(r)wI(r)).(1.50)
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(1.48)

Furthermore, the completeness relations are (see Exercise
4),

D lun(r)u () + o (r)oa(r)] = 8(r —1), (1.51)

n

D lun(r)vi(x') = o ()un(r')] = 0,

n

(1.52)

Some remarks: First, the operators of particle-hole
transformation are the same as those in Egs. (1.21), and
Eq. (1.23) becomes,

PH(r,p)P~! = —H(r, —p). (1.53)

Second, similar to the uniform case, if (un,v,) is a
solution with energy FE,, then (—v},u}) is a solution

with energy —F,, (for s-wave SC). But we only keep the
solution with positive excitation energy.

Exercise

1. Consider a homogeneous s-wave superconductor with
Hy = p?/2m — p, and A(r) is a constant Ag. Show that,
by postulating

1 .

up(r) = ﬁukelk'r, (1.54)
1 _

Up(r) = —=wvpe™T, (1.55)

VVo

where V{ is the volume of the SC, the BAG equation
reduces to the momentum-space version in Sec. . A.

2. Consider a s-wave superconductor with an uniform
current. The center of mass of Cooper pairs move with

momentum 2hq, and the gap function is,
A(r) = |Ag|e*ar. (1.56)

The eigenstates in the BAG equation can be postulated
as (see p.144 of de Gennes, 1989 for details),

1 .

up(r) = ﬁukez(k+q)'r, (1.57)
1 .

Up(r) = ——=uvpe kDT, (1.58)

Vo



Solve the BdG equation to get the excitation energy,

9 1/2
<5k+q+5k—q> + |A0|2] )

Ek — Ef—
Ek: — +q q 5

5 +

(1.59)
Assume g < k (which is of order kr), expand E}, to first
order in q, and based on this result, find out the critical
velocity fiq./m (in terms of |Ag|) that closes the SC gap.
Note: in fact, |Ag| itself also depends on g, but this is
not considered here.
3. Substitute Eqgs. (1.49),(1.50) to Eqs. (1.37)(1.38), and
confirm the orthogonality relations in Eqs. (1.47), (1.48).
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4. Substitute Eqgs. (1.34),(1.35) to Egs. (1.32)(1.33), and
confirm the completeness relations in Egs. (1.51), (1.52).
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