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I. WEYL SEMIMETAL

There are two important types of nodal points in 3D.
One is the point degeneracy between two energy levels,
the other is the point degeneracy between four energy
levels, see Fig. 1. To distinguish between them, from
now on we call the former a Weyl point, and the latter
a Dirac point. In this chapter, we only study the Weyl
points.

A. Classification of Weyl node

The Hamiltonian near a Weyl point can be written as

H = d(k) · σ, (1.1)

where k is the momentum away from the node. If the
components of d are all linear in k, then we call it as a
linear Weyl node. If at least one of the components of
d is quadratic in k, then we call it as a quadratic Weyl
node, and so on.

The topological charge (or Berry index) of a node is
given by the first Chern number (see Sec. ??),

QT =
1

2π

∫
S2
k

d2a · F, (1.2)

Fk =
1

2d3
d · ∂d

∂ki
× ∂d

∂kj
. (1.3)

The integral is over a constant-energy surface with fixed
|d|, and i, j, k are in cyclic order. We learned in Sec ??
that the integrand is just (half of) the solid angle of the
image f : S2

k → S2
d, thus QT is the winding number of

the map .
For example, given

H = ±k · σ, (1.4)
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FIG. 1 (a) A Weyl point between two levels. (b) A Dirac
point between 2 double-degenerate levels.

FIG. 2 The textures of d(k) of two Weyl points with opposite
helicities. The figures are from somewhere on the web.
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FIG. 3 The winding number is determined by the degree of
the map, which is the same irrespective of the direction one
peeps.

the textures of d(k) = ±k around the nodal point are
shown in Fig. 2. It is obvious that the winding numbers,
and hence the topological charges, are ±1. The sign ± is
called as the helicity (or chirality) of the Weyl point.

For a general linear node, its topological charge can be
obtained simply as the sign of the Jacobian,

QT = sgn

∣∣∣∣ ∂di∂kj

∣∣∣∣ , (1.5)

which is the same for every point k. The sign simply
shows that whether the map preserves or reverses the
orientation.

For a Weyl node with higher order, its topological
charge can also be determined by the energy dispersion
near the node. This is explained below (see the App. of
Chang and Yang, 2015) : An image point dr is called a
regular point if the Jacobian |∂dri /∂kj | 6= 0. A regu-

lar point can have none, or several pre-image points k(`),
d(k(`)) = dr, ` = 1, · · · , N . The degree of the map f is
defined as,

degf =

N∑
`=1

sgn

(∣∣∣∣ ∂di∂kj

∣∣∣∣
k=k(`)

)
. (1.6)
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It is equal to the winding number, and thus the topolog-
ical charge QT = degf . Brouwer’s lemma guarantees
that degf is the same for every regular points (see Fig. 3).
Therefore, one can choose a convenient dr to calculate it.
For more details, one can see Sec. 10.7 of Felsager, 1998,
and Milnor, 1965.

For example, for the following quadratic Weyl node,

d(k) '

(
k2y
2
− k2x

2
, kxky,±kz

)
, (1.7)

the Jacobian is ∣∣∣∣ ∂di∂kj

∣∣∣∣ = ∓(k2x + k2y). (1.8)

Choosing d0 = (1/2, 0, 0), then there are two pre-images,
k(1) = (0, 1, 0) and k(2) = (0,−1, 0). They contribute to
QT = ∓2 in total. A node with |QT | = 2 is sometimes
called as a double Weyl node.

If dx(k) is changed to (k2x+k2y)/2, then the topological
charge would be 0. That is, not all quadratic Weyl nodes
are double Weyl nodes.

B. Linear Weyl node

In the following, we focus only on the linear Weyl
node. Its gauge structure is similar to that of a magnetic
monopole. For example, for the nodal point in Eq. (1.4),
the Berry curvature is

F = ∓1

2

k̂

k2
, (1.9)

which is the same as the magnetic field of a monopole.
(Cf: Berry curvatures of various 2D systems in Sec. ??.)

Once a Weyl node exists, it is stable against perturba-
tions. Consider

H = ±vk · σ +H ′, (1.10)

H ′ is an arbitrary perturbation that can be expanded by
Pauli matrices,

H ′ = a(k) + b(k) · σ (1.11)

= a(k) + b(0) · σ + σ ·
∑
j

∂b

∂kj

∣∣∣∣∣∣
0

kj +O(k2). (1.12)

It’s obvious that the second term shifts the position of
the node, the third renormalizes the velocity of the Weyl
electron, but no gap is opened. That is, the Weyl point
remains intact under an arbitrary perturbation. It could
disappear only by merging with another node with op-
posite topological charge.

TABLE I Counting Weyl nodes

time-rev symm space-inv symm min number

no no 2

yes no 4

no yes 2

yes yes unstable

1. Multiplet of nodes due to symmetry

First, in the absence of space or time symmetry, mass-
less lattice fermions are required to come in pairs with
opposite helicities. This is the Nielsen-Ninomiya the-
orem (Nielsen and Ninomiya, 1981a,b), or fermion-
doubling theorem (see App. ??). We now consider
one of the node with helicity + or −,

H = ±vσ · (k− k0). (1.13)

Under time reversal transformation (if the pseudo-spin
behaves like a spin),

k→ −k, σ → −σ. (1.14)

So

H→ H′ = ±vσ · (k + k0). (1.15)

Therefore, if there is TRS, then there must be another
nodal point at −k0 with the same helicity.

Under space inversion transformation,

k→ −k, σ → σ. (1.16)

So

H→ H′ = ∓vσ · (k + k0). (1.17)

Therefore, if there is SIS, then there must be another
nodal point at −k0 with opposite helicity.

When both TR and SI symmetries exist, each node
would have two monopoles with opposite charges. The
net topological charge of a nodal point (with 4 levels) is
zero, and the Dirac node is not stable against perturba-
tions (see Table I).

Note that when there is only SIS (but no TRS), then
the minimum number of Weyl points in a solid is 2. If
there is only TRS (but no SIS), then the minimum num-
ber is 4, since TRS-doublet would have a partner dou-
blet with opposite helicity, as required by the Nielsen-
Ninomiya theorem.

C. The Burkov-Balent multilayer model

Without diving into the subject of point group sym-
metry, here we introduce a simplified model proposed by
Burkov and Balent (Burkov and Balents, 2011). Consider
a structure with alternating layers of normal insulators
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FIG. 4 A multi-layer structure with alternating layers of nor-
mal insulator (NI) and topological insulator (TI).
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FIG. 5 (a) With both TRS and SIS, the critical line at ts = td
are composed of unstable Dirac points. (b) After breaking the
TRS with magnetization m, a Dirac point in (a) separates to
two Weyl points and one has a finite region of Weyl semimetal
phase. The gapped phase on the lower left is a quantum
anomalous Hall phase. As m gets larger, the point × is first
engulfed by the Weyl phase, then the QAH phase.

(NI) and topological insulators (TI) stacked along the z-
axis (see Fig. 4). Coupling of the top and down surface
states (SS) of a TI layer is written as ts; coupling of SS
between nearest-neighbor TI layers is written as td.

When the intra-layer coupling is larger than the inter-
layer coupling (ts > td), the whole structure is similar to
a NI. On the other hand, when td > ts, the whole struc-
ture is similar to a TI. By tuning the relative strength
between ts and td, one can induce a topological phase
transition at certain critical value. At that value the bulk
gap is expected to close, probably producing a point de-
generacy.

However, from the analysis in previous section, we
know that with both TRS and SIS, this degenerate
(Dirac) point would be unstable. The degeneracy would
be lifted when one slightly moves away from the critical
value (see Fig. 5(a)). To stablize it, one can break the
TRS, for example.

For one TI slab, the Hamiltonian with the SS coupling
is,

H = vτz ⊗ (σ × k⊥) · ẑ + tsτx ⊗ 1 +m1⊗ σz, (1.18)

in which τ accounts for the up and down layers degree of
freedom, and m is the magnetization. From now on we
will drop the ⊗ sign.

For multiple-layers, we have

Ĥ =
∑
l

[vτz(σ × k⊥) · ẑ + tsτx +mσz] c
†
l cl

+
∑
l

td(τ+c
†
l cl+1 + τ−c

†
l cl−1), (1.19)

where τ± = (τx±iτy)/2, cl = (clu, cld)
T is a 2-component

operator such that τ+c
†
l cl+1 = c†lucl+1d · · · etc.

Assume there are N (NI+TI)-layers with period d, and
impose the periodic BC along z-axis. Using the Fourier
transformation,

c†l =
1√
N

∑
kz

eildkzc†kz . (1.20)

one has,

Ĥ =
∑
kz

[
vτz(σ × k⊥) · ẑc†kzckz

+ mσzc
†
kz
ckz

+ tsτxc
†
kz
ckz

+ td(e
−ikzdτ+c

†
kz
ckz + eikzdτ−c

†
kz
ckz )

]
(1.21)

=
∑
kz

(
h0 +mσz ts + tde

−ikzd

ts + tde
ikzd −h0 +mσz

)
c†kzckz ,

≡
∑
kz

Hkzc
†
kz
ckz , (1.22)

where

Hkz = τzh0 +mσz

+ tsτx + td(e
−ikzdτ+ + eikzdτ−), (1.23)

and h0 = v(σ×k⊥) · ẑ. Each kz-subspace is independent
of each other.

Under the unitary transformation (Burkov et al.,
2011),

U =

(
1 0

0 σz

)
(1.24)

one has

τx,y → U†τx,yU = τx,yσz, (1.25)

σx,y → U†σx,yU = τzσx,y. (1.26)

τz and σz are not changed.
After the transformation,

Hkz = h0 +mσz

+ [tsτx + td(e
−ikzdτ+ + eikzdτ−)]σz. (1.27)

One can rotate the τ on the 2nd line without changing
the first line. Thus, the Hamiltonian is decomposed to 2
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FIG. 6 M−(kz) plotted as a function of kz (rotated by 90
degrees).

diagonal blocks,

Hkz = h0 +

[
m+ τz

√
t2s + t2d + 2tstd cos(kzd)

]
︸ ︷︷ ︸

Mτz (kz)

σz,

(1.28)
where M±(kz) can be considered as the effective masses
of the 2D electron gas in the kz-layer.

Finally, the 2× 2-blocks can be easily diagonalized to
get the eigenvalues,

ετz± = ±
√
v2(k2x + k2y) +M2

τz (kz). (1.29)

Let m > 0, then M+(kz) is always positive, and ε+± has

a finite gap. On the other hand, ε−± can be gapless if
M−(kz) = 0, or

cos(k0d) =
m2 − (t2s + t2d)

2tstd
. (1.30)

That is, if

|ts − td|︸ ︷︷ ︸
mc1

≤ m ≤ |ts + td|︸ ︷︷ ︸
mc2

, (1.31)

then there are a pair of Weyl nodes at ±k0ẑ (see
Figs. 5(b) and 6).

If m < |ts − td|, then Eq. (1.30) has no real solution,
and M−(kz) < 0. If m > |ts− td|, then Eq. (1.30) has no
real solution, and M−(kz) > 0. For small m, the material
is a trivial insulator. The pair of Weyl nodes appear at
kzd = π when m = mc1. They move apart along the kz-
axis when m > mc1, and merge with each other again at
kz = 0 when m = mc2 (see Fig. 7). After that, the energy
gap is re-opened, but the system becomes a non-trivial
insulator (see below).

We now focus on the Weyl semi-metal phase. As shown
in Eq. (1.22), the system is composed of decoupled 2D
sub-systems, each has their own kz-layer of 2D BZ . Since
the Weyl point is a 3D monopole, it has a string of gauge
singularity (Dirac string). The location of the string is
gauge dependent, but they should connect the two Weyl

kx

ky

kz

+

−

Brillouin zone

k0

k0

Surface BZ 

for [100]

FIG. 7 A pair of Weyl points appear at kz = π when m =
mc1. They stretch out a Dirac string (red dotted lines) at
larger m, and finally merge with each other at m = mc2, but
leaving a full Dirac string behind.

nodes (see Fig. 7). The 2D kz-layers within |kz| < k0
(M−(kz) < 0) do not intersect with the gauge singularity,
and the first Chern number C1 = 0. On the other hand,
the kz-layers outside of that range would intersect with
the gauge singularity, and have a vortex in each of the
2D BZ. This leads to C1 = 1, and σ2D

H (kz) = e2/h for
each of the 2D-subsystem. See Sec ?? for the discussion
of the vortex in the BZ of a quantum Hall system.

As a result, the 3D Hall conductivity is

σ3D
H =

1

L

∑
kz

σ2D
H (kz)

=

∫ π/d

−π/d

dkz
2π

σ2D
H (kz) =

e2

h

k̄0
π
, (1.32)

where k̄0 = π/d−k0 is half the length of the Dirac string.

When m = mc2, the two nodes merge at kz = 0, and
the Dirac string spans the whole kz-axis. After that, the
system enters the semi-quantum anomalous Hall phase
with

σ3D
H =

e2

h

1

d
. (1.33)

1. Fermi arc of surface states

Divide the space into two parts, with the magnetiza-
tion

m(x) < |ts − td| for x < 0,

m(x) > |ts − td| for x > 0, (1.34)

and m(x) increases monotonically from one side to the
other. Ignoring the unfilled M+(kz) block, the remain-
ing two-state Hamiltonian for a 2D sub-system is (see
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FIG. 8 Fermi arc of the SS in a 2D surface BZ. Five slices
of the 1D edge BZ of the 2D kz-subsystem are shown on the
right.

Eq. (1.28))

Hkz = h0 +

[
m(x)−

√
t2s + t2d + 2tstd cos(kzd)

]
︸ ︷︷ ︸

Mkz
− (x)

σz.

(1.35)
Similar to the analysis of the edge states of the QWZ
model in Chap. ??, first replace kx by the differential
operator 1

i
∂
∂x . One then solves the following differential

equation to find the edge state,(
Mkz
− (x) v

(
∂
∂x + ky

)
v
(
− ∂
∂x + ky

)
−Mkz

− (x)

)
φkzs = εkzs (ky)φkzs .

(1.36)
A trial solution that decays inside the Weyl semimetal

at x > 0 is,

φkzs (x) = e−
1
v

∫ x
0
dx′Mkz

− (x)

(
1

1

)
. (1.37)

One can verify that it is indeed an eigenstate, with eigen-
value εkzs (ky) = vky, which is linear in ky and indepen-
dent of kz.

The energy dispersion of the surface states is a 2D
surface in the 3D BZ. The surface BZ for the [100] surface
is shown in Fig. 8, with 5 slices of the energy dispersion
shown on the right. A 2D subsystem with C1 = 0 is
a trivial 2D insulator, which has no edge state. A 2D
subsystem with C1 = 1 is similar to a 2D quantum Hall
system, which has chiral edge state. The electrons fill up
to a Fermi point in its 1D edge BZ. By connecting these
points from different kz’s, one sees that the SS electrons
of the Weyl semimetal would fill up to a Fermi line (aka
Fermi arc, Wan et al., 2011). For more details, see Yang

et al., 2011 and Okugawa and Murakami, 2014. Also see
Potter et al., 2014 for an illuminating analysis of the SS
and the Fermi arc. The relation between group symmetry
and the effective Hamiltonian near a Weyl point can be
found in Fang et al., 2012.

Experimentally, transition metal monopnictides such
as TaAs (Lv et al., 2015; Xu et al., 2015b), and NbAs
(Xu et al., 2015a) have been confirmed as Weyl semi-
metals, and their Fermi arcs observed.

Exercise
1. Instead of breaking TRS, one can break the SIS of the
Burkov-Balent model, for example, by unbalancing the
top-bottom layers of the TI slabs. That is, by adding a
term V0τz to the Hamiltonian (ts,d > 0),

H = τzh0 + V0τz

+ tsτx + td(e
−ikzdτ+ + eikzdτ−), (1.38)

where h0 = v(σ × k⊥) · ẑ.
(a) Given the SI operator Π = τx, show that the Hamil-
tonian with V0 = 0 has SIS, ΠH(k)Π−1 = H(−k), while
V0 breaks it.
(b) Switch from the basis τ ⊗ σ to the basis σ ⊗ τ ,
perform a rotation in τ -space to block-diagonalize the
Hamiltonian, then find out the eigenvalues εσz± of H.
2. Following Prob. 1, (a) show that when ts = td, the
middle two bands touch at a circle of line degeneracy at
kz = π/d. Such a degeneracy requires the fine-tuning of
ts and td, and therefore is not robust.
(b) Break the rotational symmetry around kz by having

ts,d = t0s,d + t′s,dk
2
x (1.39)

= t0s,d + t′s,dk
2
⊥ cos2 θ. (1.40)

Show that, when ts = td, there are point degeneracies at

cos 2θ =
2(t0s − t0d)
k2⊥(t′d − t′s)

− 1. (1.41)

(c) The multilayer structure is a normal insulator when
t0s > t0d. Assume t′s > t′d, decrease the value of t0s and
investigate the creation and annihilation of Weyl points.
(Ref: Halász and Balents, 2012)
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