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I. TOPOLOGICAL INSULATOR

In this Lecture Note, the term “topological insulator”
(TI) specifically refers to the insulator with its topol-
ogy protected solely by time-reversal symmetry. A re-
lated term is topological crystalline insulator, in which
the topology is protected by crystalline symmetry. We
will first study 2D TI, then 3D TI. The edge states of the
TIs is the subject of next Lect.

A. Time-reversal symmetry

For a state with spin quantum number j, which can be
an integer or a half-integer, the time-reversal operator is

Θ = e−iJyπ/ℏK, (1.1)

in which Jy is a spin operator (Sakurai, 1985). For spin
1/2,

Θ = e−isyπ/ℏK = −iσyK. (1.2)

In general, if a particle has integer spin, then applying
the TR transformation twice gives Θ2 = 1. However, if
a particle has half-integer spin, then

Θ2 = −1. (1.3)
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FIG. 1 (a) The TRIM are shown as black and white dots in
the first Brillouin zone. Only four of them (black dots) are
independent. (b) The Bloch energy levels of a system with
time-reversal symmetry but without space-inversion symme-
try.

This fact is crucial to the existence of the Kramer de-
generacy: For a system with TRS and half-integer spin,
if ψ is an energy eigenstate, then Θψ is also an energy
eigenstate. Furthermore, these two states are degenerate
and orthogonal to each other.
Pf: Since HΘ = ΘH, so if ψ is an eigenstate with energy
ε, Hψ = εψ, then

HΘψ = ΘHψ = εΘψ. (1.4)

That is, Θψ is also an eigenstate with energy ε.
Furthermore, using the identity ⟨β|α⟩ = ⟨α̃|β̃⟩, one has

⟨ψ|Θψ⟩ = ⟨Θ(Θψ)|Θψ⟩ (1.5)

= −⟨ψ|Θψ⟩, (1.6)

in which Θ2 = −1 has been used to get the second equa-
tion. Therefore, ⟨ψ|Θψ⟩ = 0. QED.
For example, if a Bloch state ψnk↑ has energy εnk↑,

then its time-reversed state Θψnk↑ = −ψn−k↓ has energy
εn−k↓, and with time reversal symmetry, εnk↑ = εn−k↓
(Kramer degeneracy).

1. Time-reversal-invariant momentum

For a solid with space inversion symmetry, one has
εn−ks = εnks (s =↑ or ↓). When the solid has both TR
and SI symmetries, there is a two-fold degeneracy at each
k-point,

εnks = εn−k−s = εnk−s. (1.7)
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An energy band thus has a global two-fold degeneracy
over the whole Brillouin zone.

On the other hand, if there is TRS but no SIS, so that
εn−ks ̸= εnks, then the two-fold degeneracy at a k-point
is not guaranteed, except at the k-point that differs from
−k by a reciprocal lattice vector G,

k = −k+G. (1.8)

These k-points are called time-reversal-invariant mo-
menta (TRIM), see Fig. 1(a). At a TRIM,

εnks = εn−k−s = εn,−k+G,−s = εnk−s. (1.9)

Typical TRIM are located at the corners of a BZ, k =
G/2.

2. Spin-orbit interaction

The spin of an electron in a solid is often coupled with
the electron’s orbital motion via the spin-orbit inter-
action (SOI),

Hso = λsoσ × p · ∇VL, λso =
eℏ

4m2c2
, (1.10)

where VL is the lattice potential. Such an interac-
tion is invariant under time-reversal symmetry (TRS),
and invariant under space-inversion symmetry (SIS) if
VL(−r) = VL(r). Because of the SOI, Bloch states ψnk±,
which are energy eigenstates, are in general not spin
eigenstates ψnk↑/↓.

Recall that the TR operator for fermion is,

Θ = iσyK, Θ
2 = −1. (1.11)

In the presence of TRS, if the Bloch states are topologi-
cally trivial, then for one Kramer pair one can choose{

Θψnk+ = −ψn−k−,
Θψnk− = +ψn−k+.

(1.12)

The − sign in front of ψ−k,− is necessary because Θ2 =
−1.

The Bloch states, which are spinors now, are of the
form,

ψnk+(r) = eik·r [+ank(r)χ↑ + bnk(r)χ↓] , (1.13)

ψnk−(r) = eik·r [−b∗nk(r)χ↑ + a∗nk(r)χ↓] , (1.14)

where ank, bnk are cell-periodic functions, and χ↑ =
(1, 0)T , χ↓ = (0, 1)T . If the SOI is weak, then |bnk(r)| ≪
1, so that (+,−) ≃ (↑, ↓). It is not uncommon to refer to
± simply as spin up/down.

For a crystal with time-reversal symmetry, εnks =
εn−k−s. In the absence of spin-orbit interaction (SOI),
εn−k−s = εn−ks and we have a symmetric energy spec-
trum with global two-fold degeneracy (Fig. 1(b)). In the
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FIG. 2 (a) Time reversal conjugate pairs and effective Bril-
louin zone. (b) Folding the EBZ into a cylinder, with open
edges.

presence of SOI, the global two-fold degeneracy is lifted
(except at TRIM). Nonetheless, the energy spectrum still
looks symmetric because of the Kramer degeneracy.

If the Bloch states are topologically non-trivial, then
one needs to write{

Θψnk+ = −eiχn−kψn−k−,
Θψnk− = +eiχnkψn−k+.

(1.15)

It’s possible not to have such phase factors (in the so-
called TR-smooth gauge). However, this would result
in points of gauge singularity within the BZ.

B. Z2 topological number

1. Chern number

To understand the topology in topological insulator
(TI), we follow Moore and Balent’s argument for 2D
TI (Moore and Balents, 2007). Because of time-reversal
symmetry, the degenerate Bloch states for k and −k in a
Brillouin zone are time-reversal conjugate (see Fig. 2(a)).
As their Berry curvatures cancel with each other, the first
Chern number for a filled band vanishes. Since the do-
main of independent Bloch states cover only half of the
BZ (called effective Brillouin zone, or EBZ), one may
wonder if the integral of the Berry curvature over the
EBZ could be quantized.

Unfortunately, since the EBZ does not form a closed
surface (see Fig. 2(b)), no quantization is guaranteed.
To fix this, one can put two caps with TR conjugation
to close the EBZ. This closed surface should have an in-
teger C1, but its value depends on the caps of choice.
Nevertheless, because of the TR conjugation, the caps
can only change C1 by an even integer. That is, C1 mod
2 is independent of the caps of choice. Therefore, C1

mod 2 should be an intrinsic property of the EBZ itself.
We thus have two topological classes: 0 being the usual
insulator, and 1 being the topological insulator. Hence,
a 2D TI is characterized by a Z2 topological number.
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FIG. 3 Two patches of gauge in the EBZ.

2. Winding number

Fu and Kane showed that the Z2 topological num-
ber can be related to the winding number between two
patches of gauge (Fu and Kane, 2006), which we now
explain.

First, instead of Eq. (1.15), we will adopt the TR-
smooth gauge, {

Θψnk+ = −ψn−k−,
Θψnk− = +ψn−k+.

(1.16)

As a result, the phases of Bloch states cannot be uniquely
defined over the whole BZ. As in the case of the magnetic
monopole in Chap ??, we need to use more than one
patch of gauge to get rid of singularities. This is the
topological obstruction mentioned earlier.
Fig. 3 shows the EBZ covered by two patches of gauge.

Along their boundary, the cell-periodic functions are con-
nected by gauge transformation,

|unkα⟩B = Uαβ |unkβ⟩A, (1.17)

where α, β are “spin” indices ±, and U is a U(2) matrix
for one Kramer pair.

Recall that the Berry connection and Berry curvature
for band n are,

An
αβ(k) = i⟨unkα|

∂

∂k
|unkβ⟩, (1.18)

Fn
kℓ = ∂kA

n
ℓ − ∂ℓA

n
k − i[An

k ,A
n
ℓ ], (1.19)

where k, ℓ are space indices 1, 2, 3. Under a gauge trans-
formation (n is dropped for simplicity),

AB
ℓ = U†AA

ℓ U+ iU† ∂

∂kℓ
U. (1.20)

The topology of the Bloch states can be characterized by
the winding number w of the U(1) phase of U around the
closed loop ∂A in Fig. 3,

w =
1

2πi

∮
∂A

dk · tr
(
U† ∂

∂k
U

)
. (1.21)

Taking the trace of Eq. (1.20), we have

w =
1

2π

∮
∂A

dk ·
(
AA −AB

)
, (1.22)
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FIG. 4 The first quadrant of the Brillouin zone in a 2D lattice
model. The four corners are the TRIM.

in which AA/B ≡ tr A⃗A/B .
Since |uAkα⟩ is smoothly defined inside A, one has∮

∂A

dk ·AA =

∫
A

d2k FA
z . (1.23)

The same cannot be done for |uBkα⟩, since it is not
smoothly defined in A. Instead, we write∮

∂A

dk ·AB =

∮
∂EBZ

dk ·AB −
∮
∂B

dk ·AB

=

∮
∂EBZ

dk ·AB −
∫
B

d2k FB
z .(1.24)

Finally, combine Eqs. (1.23) with (1.24), we have (Fu
and Kane, 2006),

w =
1

2π

(∫
EBZ

d2k Fz −
∮
∂EBZ

dk ·A
)
mod 2. (1.25)

A modulo operation is imposed, since the second term
is only gauge invariant modulo 2. This expression of
w is different from the Chern number in systems with
quantum Hall conductance, which only has the first term,
and is an integral over a closed surface (the whole BZ).
Eq. (1.25) looks like the generalized Gauss-Bonnet

formula for an open 2D surface M , in which the Berry
curvature is replaced by the Gaussian curvature G, and
the Berry connection is replace by the geodesic curvature
kg of the boundary,

χ =
1

2π

(∫
M

d2r G−
∮
∂M

dr kg

)
. (1.26)

For example, for a torus, χ = 0, for a disk-like surface
(which has a boundary), χ = 1, and for a sphere, χ = 2.

3. Alternative form of the Z2 topological number

Fu and Kane found yet another way of calculating the
Z2 index (Fu and Kane, 2006). Its deduction is less
straightforward compared to the ones above, so here we
will not explain how it is derived. Detailed explanation
can be found in another set of my note.



4

Let’s consider N filled Kramer pairs of Bloch bands in
an insulator, and introduce the following quantity,

wmα,nβ(k) ≡ ⟨um−kα|Θ|unkβ⟩, n = 1, · · · , N ;α, β = ±
(1.27)

They are the matrix elements of a 2N×2N matrix, often
called the sewing matrix. Since the Bloch states from
different bands are orthogonal to each other, one has

wmα,nβ(k) = δmnwnαβ(k). (1.28)

For example, for one Kramer pair, the sewing matrix
is

wn =

(
0 eiχnk

−eiχn−k 0

)
. (1.29)

At a TRIM, it becomes an antisymmetric matrix,

wn = wn(Λ)

(
0 1
−1 0

)
, wn(Λ) ≡ eiχnΛ . (1.30)

For filled bands at each TRIM, one can define

δi =
∏

n filled

wn(Λi)√
w2

n(Λi)
. (1.31)

Note that if the argument of a complex number z = reiθ

is restricted to [0, 2π), then
√
z2 has two possible values:

If θ ∈ [0, π), then

z√
z2

=
reiθ

r (e2iθ)
1/2

= 1. (1.32)

However, if θ ∈ [π, 2π), then

z√
z2

=
rei(π+θ̃)

r
(
e2iθ̃

)1/2
, θ̃ ∈ [0, π] (1.33)

= −1. (1.34)

Thus, z/
√
z2 can be +1 or −1. That is, the δi above is

product of +1 and −1.
Finally, the Z2 topological index ν of a topological in-

sulator is related to δi’s (see Fig. 4),

(−1)ν = δ1δ2δ3δ4. (1.35)

4. Lattice with inversion symmetry

Even though ν is known to have two possible values,
0 and 1, it is not easy to get explicit values of χnΛi

.
Fortunately, if the lattice has space inversion symmetry
(SIS), then we can determine ν from the parity ζn(Λi) of
the Bloch state ψnΛi± at TRIM.

If the lattice has SIS, then ψnkα are parity eigenstates
at k = Λi,

ΠψnΛiα(r) = ζnΛi
ψnΛiα(r). (1.36)



(b)(a)

( )k

k



FIG. 5 (a) In momentum space, the energy dispersion curves
of the edge states cross each other at a TRIM. (b) In real
space, there are helical edge states along the boundary of a
2D TI.

The parity eigenvalue ζnΛi
= 1 or −1 is the same for the

two Bloch states (with α = ±) in a Kramer pair. Fu
et al., 2007 showed that

wn(Λi) = ζn(Λi), (1.37)

hence

δi =
∏

n∈filled

ζn(Λi). (1.38)

It is the cumulative parity of filled Bloch states (pick only
one ζn(Λi) for each Kramer pair) at a TRIM. Finally,

(−1)ν =

4∏
i=1

δi. (1.39)

Band inversion often results in a change of the parity ζn,
and this results in topological phase transition. For a
crystal without inversion symmetry, one can deform it to
one that has SIS and determine its ν by parities. This
is a valid shortcut only if the energy gap remains open
during the process of deformation.

The 2D topological insulator is often called the quan-
tum spin Hall (QSH) insulator. Some proposed mate-
rials for QSH insulator are 2D transition metal dichalco-
genides (such as the 1T’ form of WTe2) (Cazalilla et al.,
2014, Qian et al., 2014), and single-layer ZrTe5 (Weng
et al., 2014, Li et al., 2016). Several experimental re-
ports can be found in, e.g., Fei et al., 2017, Wu et al.,
2018, and Ugeda et al., 2018.

C. Helical edge state

The energy levels of of edge states appear within the
energy gap. According to the discussion at the beginning
of this Lect, the energy levels of a TI edge state must
cross with its Kramer partner at TRIM. Slightly away
from a TRIM, the energy dispersion is linear: one level
has positive slope (an edge electron with positive veloc-
ity), and the other has negative slope (negative velocity)
(see Fig. 5(a)). Note that it’s impossible for both to have
the same sign of slopes near the degenerate point. This
point degeneracy can be lifted only if the TRS is broken.
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FIG. 6 The energy dispersion of edge states in edge Brillouin
zone: (a) trivial 2D insulator, (b) 2D topological insulator.

When the chemical potential is slightly above or below
the degenerate point, the Fermi surface would simulta-
neously cut through a Kramer pair of Bloch states with
energies (εk+, ε−k−). As a result, there is a pair of edge
states, with one spin moving along one direction, and the
opposite spin moving along the opposite direction (see
Fig. 5(b)). This is called helical edge states.

In the presence of TRS, the energy levels of edge states
would cross each other at TRIM, no matter whether there
is topology or not. However, the ways they link together
are different. When δ1δ2 and δ3δ4 in Fig. 4 have the
same sign, ν = 0, and we have a trivial insulator with
no switch of Kramer-pair partner (Fig. 6(a)). When δ1δ2
and δ3δ4 have opposite signs, ν = 1, and we have a TI ac-
companied by a switch of Kramer-pair partner at TRIM
(Fig. 6(b)).

If one plots a horizontal line (chemical potential) in-
side the energy gap, then it would cut the edge states
in (a) even number of times, but cut those in (b) odd
number of times. The former can be avoided by shifting
or distorting the energy levels of edge states, while the
latter cannot be avoided. Thus, the edge states in TI are
robust, while those in trivial insulator are not.

The edge state is robust as long as TRS is maintained.
Even if there is a non-magnetic impurity Vimp(r) block-
ing the way, the electron will not be back scattered since
that requires a spin flip. Indeed, in the Born approxima-
tion, the transition amplitude for an edge state ψe being
scattered to its time-reversed state θψe is proportional to
the square of

⟨ψe|Vimp(r)|θψe⟩. (1.40)

Such a bracket can be shown to be zero.

If there is a magnetic impurity that breaks TRS, then
an electron could be backscattered, accompanied by a
spin flip. Also, in the presence of electron interaction,
there is a possibility that the edge is spontaneously
magnetized. Should this happen, then the edge state is
no longer protected by the TRS.

Exercise
1. Check that Eq. (1.12) is consistent with Θ2 = −1.

2. Prove that the transition amplitude for an edge state

2D TI A stack of 2D TI

Helical edge state

z

x

y

Helical SSfragile

(a) (b)

(c) (d)

FIG. 7 (a) A 2D TI and its helical edge state. (b) Stacking
2D TIs to construct a 3D TI. The surface state is not as robust
as the edge state of a 2D TI. (c) and (d): Stacking the 2D TIs
along the other two directions. The helical edge states reside
on different sides of the 3D cubes.
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FIG. 8 The colored 2D planes in the 3D BZ are time rever-
sal invariant. That is, under a TR transformation, they are
mapped to themselves. There are all six of them. Each plane
can be assigned a Z2 topological number.

ψe being scattered to its time-reversed state θψe is zero,

⟨ψe|Vimp(r)|θψe⟩ = 0. (1.41)

II. 3D TOPOLOGICAL INSULATOR

The analysis of the 2D TI can be generalized to 3D.
One can naively stack the 2D materials to form a 3D
structure (see Fig. 7). In early days, this has been at-
tempted to build a 3D quantum Hall system, but failed.
An essential reason is that there is no Chen number in
odd dimension. The situation is different for the case of
TI, where one can actually build a weak TI this way.
To simplify the discussion, consider a cubical BZ (see

Fig. 8). If the insulator has TRS, then k-state and −k-
state are TR conjugate. In particular, the points on the
xy plane map to themselves under time reversal. Accord-
ing to the Moore-Balents argument, this plane should
have a corresponding Z2 index. Using Fu and Kane’s
formula, it is given by

(−1)ν = δ1δ2δ3δ4 ≡ z0, (2.1)
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FIG. 9 (a) Four examples of the parity distributions at the
TRIM (in the first octant of the BZ) of 3D TIs. (b) The
Fermi seas in surface BZs of the four cases in (c). White and
black dots at the corners show the product of parities along
kz (see text). The grey areas are filled, and the white areas
are empty. (Figs from Fu and Kane, 2007)

where δi =
∏

n∈ filled ζn(Λi) (see Fig. 8).
By symmetry, the ky-kz plane and the kz-kx plane also

have their own Z2 indices, x0 and y0. In addition, the
planes at front, right, and top side of the cube also map
to themselves under time reversal. So there are three
more Z2 indices, x+, y+, and z+. Overall there are 6 Z2

numbers.
However, these numbers are not independent of each

other,

x0x+ = y0y+ = z0z+ =

8∏
i=1

δi. (2.2)

Because of these two relations, there are only 4 indepen-
dent Z2 integers. One can choose, for example,

(z0z+, x+, y+, z+) or (ν0; ν1, ν2, ν3), (2.3)

where

(−1)ν0 =

8∏
i=1

δi, (2.4)

(−1)ν1 = δ2δ4δ6δ8, (2.5)

(−1)ν2 = δ3δ4δ7δ8 (2.6)

(−1)ν3 = δ5δ6δ7δ8. (2.7)

Among these 4 indices, ν0 is called strong TI index;
ν1, ν2, ν3 are called weak TI indices. The strong index
is intrinsic to the 3D TI, while the other 3 are, roughly
speaking, related to the stacking of 2D TIs along the x, y,
and z directions (see Fig. 7). These indices are discovered
by Moore and Balents, 2007, Fu et al., 2007, and Roy,
2009 at about the same time.

A. Fermi circle of the surface state

In Fig. 9(a), four examples of the cumulative parity
distributions at TRIM are shown. The product of all

FIG. 10 Phase transition of topological insulator and accom-
panied changes. BiTlSe is a trivial insulator when δ < 0.47.
All of the parities at the corners are positive, and each Bloch
state can have two spins. There is a band inversion when
δ = 0.47, causing the parity at the origin to change sign. As
a result, the material becomes a topological insulator. It now
has helical edge states, in which the direction of spin is locked
with the direction of momentum (see the ARPES data in dark
insets). Fig from Xu et al., 2011

8 parities gives (−1)ν0 . The product of four cumulative
parities on the ky-kz plane at kx = π gives (−1)ν1 , and so
on. This way, one can get the four indices (ν0; ν1, ν2, ν3)
shown on top of the figures.
Recall that for a 2D TI, the energy level of an edge

state within the energy gap would inevitably cross with
the chemical potential (Fig. 6 of Lect I). This applies
to 2D planar subspaces of the 3D Brillouin zone. For
example, suppose the TI has an open surface on the x−y
plane. Fig. 9(b) shows the 2D surface BZ of the surface
state (SS) on the kx-ky plane. The parities πi on corners
are the products of two parities along the kz-direction.
When π1π2 = −1 (e.g., see the 2nd figure from the left
in Fig. 9(b)). There is one (or an odd number of) edge
state traversing the energy gap from kx = 0 to π, crossing
the chemical potential µ at a Fermi point. On the other
hand, since π1π3 = 1, there is no (or an even number
of) edge state crossing µ. The Fermi point at ky = 0
becomes a Fermi line when one scans over ky.
That is, once we know the four parities πi, the topol-

ogy of the Fermi circle in the 2D surface BZ can be deter-
mined (assuming the energy dispersion of a SS crosses the
Fermi level only once): between a black dot (odd parity)
and a white dot (even parity), there must be a Fermi line
separating filled states from empty states. One can check
that the Fermi circles in Fig. 9(b) do follow this rule. The
Fermi sea encloses one or more black dots, which are also
the locations of Dirac points (in 2D momentum space).

Fig. 10 sums up nicely what we have learned so far.
When the compound BiTlSe undergoes a phase transi-
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(a)

(b)

FIG. 11 (a) For a lattice with an edge dislocation, the Burgers
vector is perpendicular to the line of dislocation. (b) For a
lattice with screw dislocation, the Burgers vector is parallel
to the line of dislocation.

tion from an ordinary insulator to a strong TI, the band
inversion, the change of parity at TRIM, and the helical
surface states with spin-momentum locking all emerge
simultaneously.

In general, a strong TI would have odd number of Dirac
points, and odd pairs of helical SS. On the other hand,
a weak TI always have even number of Dirac points, and
even pairs of helical SS. The Dirac point of a weak TI is
fragile. Take the one with indices (0; 011) as an example:
Suppose that due to surface reconstruction, a unit cell
is doubled along the y-direction. As a result, the surface
BZ would be folded back along the ky-direction. The two
black dots now could couple with each other and open the
Dirac point.

Note that even though for a strong TI, there are odd
number of Dirac points on one surface, there are more
Dirac points on the opposite side of the TI. When counted
together, a 3D TI would still have even number of Dirac
points from its surface states.

BiSb is the first experimentally confirmed 3D topolog-
ical insulator (Hsieh et al., 2008). Subsequently, many
more have been predicted and verified (Bansil et al.,
2016). An ideal TI would be one that is an insulator with
large band gap. But this is hard to come by, because the
inversion of energy gap is often a result of spin-orbit cou-
pling, which is not easy to be enhanced. More comments
on topological materials can be found in Sec. II.D below.

B. Weak topological indices

As we have mentioned earlier, a weak TI with indices
(0; 0, 0, 1) can be considered as layers of 2D TIs stacked
along the z-axis. For general weak indices, one can define

Mν = ν1
g1

2
+ ν2

g2

2
+ ν3

g3

2
, (2.8)

1D edge 

state

FIG. 12 In a 3D weak TI with screw dislocation, each plane
can be considered as a 2D insulator with a cut ending at the
line of dislocation. Near the cut, the opposing edge channels
from adjacent planes cancel with each other. As a result, the
edge electrons would move down the line of dislocation.

in which gi are basis of reciprocal lattice vectors, then
the 2D-TI layers are stacked along the Mν direction.
Even though a weak 3D TI has fragile 2D surface

states, it can have robust 1D states along a line of dis-
location. In Fig. 11)(a), one can see that due to a line
of dislocation along t, a loop that is closed in a perfect
crystal now can no longer be closed. The vector of dis-
placement B is called a Burgers vector. For an edge
dislocation, B ⊥ t; for a screw dislocation, B ∥ t.
It is shown by Ran et al., 2009 that, if

B ·Mν = π (mod 2π), (2.9)

then there is a pair of helical edge states along the line
of dislocation (Fig. 12). For example, consider a cubic
lattice with indices (0; 0, 0, 1), then Mν = g3/2 = π/aẑ,
where a is the lattice constant. If there is a screw disloca-
tion with B = aẑ (see Fig. 11(b)), then B ·Mν = π, and
there are 1D helical states along the line of dislocation.
If B = ax̂ or aŷ (for edge dislocation), then there is no
edge state in this weak TI.
This criterion applies to both strong and weak TIs.

For example, if ν0 = 1, but Mν = 0, then none of the
dislocation lines would have helical edge states.

C. Bulk-edge correspondence

Surface (or edge) state has been a recurring theme
in this course. At the interface between two materials
with different topological electronic phases, the interface
states are bound to exist. This is called the bulk-edge
correspondence. So far, we have discussed the domain-
wall state in SSH model, the chiral edge state in quantum
Hall system, and the helical edge states in 2D and 3D TIs.
We will see more examples of surface state later, when
new topological phases are encountered.
Even though a general proof is lacking, such a bulk-

edge correspondence is generally believed to be true (for
non-interacting systems). This property can roughly be
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m

0δ < 0δ >gapless

FIG. 13 In the parameter space of (δ,m), the SSH model is
gapless only at a single point (0, 0).

understood as follows: In the sense of Thomas-Fermi ap-
proximation, energy gap can be defined locally and vary
with location. Near the interface between two different
topological phases, the energy gap needs to close (e.g.,
for band inversion), otherwise the topological phase could
not change. As a result, there must be a gapless region
near the interface (or surface) for electrons to dwell on.

A remark: For a quantum topological phase to change,
the energy gap needs be closed. Such a statement is valid
only if the symmetry of the system remains unchanged.
If the symmetry changes, then can pass from one phase
to the other without closing the gap (Ezawa et al., 2013).
For example, consider the SSH model,

H = (t− + t+ cos k)σx + t+ sin k σy +mσz, (2.10)

where t± = t ± δ, δ is the dimerization parameter (see
Prob. 2 of Chap ??). The energy spectrum is

E± = ±
√
t2 cos2

k

2
+ δ2 sin2

k

2
+m2. (2.11)

When m = 0, H has both TRS and particle-hole sym-
metry. To get from the phase with δ > 0 to the one with
δ < 0, we need to cross the gapless point (δ,m) = (0, 0),
see Fig. 13. However, if m ̸= 0, then H has no TRS
and the energy bands are gapped. In this case, one can
go from a phase with δ > 0 (m = 0) to a phase with
δ < 0 (m = 0) via a path with non-zero m, such that the
energy gap remains open during the transit.

D. Topological crystalline insulator and beyond

In addition to TRS, the topology of an insulator can
also be protected by crystalline symmetry. These are
called topological crystalline insulator (TCI). As we
have learned, T 2 = −1 plays a crucial role in TI. In a
TCI, this is not required and T 2 = 1 is allowed. That is,
electron spin, as well as spin-orbit coupling, is no longer
essential to the topology.

The surface states need to cross each other at ki, sim-
ilar to the SS in a topological insulator. However, some
other aspects of the SS are different. For example, their
energy dispersion near the crossing point is quadratic in
Fu’s example, instead of linear. Also, the number of
Dirac points on a surface can be even, instead of odd.

Note that even though the gapless Dirac point is pro-
tected by the UT symmetry, the rotation symmetry could
be damaged by structural deformation.

In some other TCIs, the TR symmetry can be dis-
pensed with, so that only the crystalline symmetry is at
play. The first experimentally confirmed TCI is SnTe
(Hsieh et al., 2012), which is protected by a mirror sym-
metry.

This discovery opens up a floodgate to topological ma-
terials, since there are hundreds of crystalline symmetry
groups. With the help of the so-called symmetry-based
indicators (Po et al., 2017) or elementary band repre-
sentations (Bradlyn et al., 2017), researchers can search
through the database of materials to find out candidates
of topological materials. See Gibney, 2018, Tang et al.,
2019, Queiroz and Stern, 2020, and Elcoro et al., 2021
for some updates.

A related development is the discovery of higher-
order TCIs. They have conducting SS protected by
topology along edges (2nd order), or corners (3rd order)
of the topological material. Also, see Parameswaran and
Wan, 2017 and the references therein.

The topology in TI and TCI are protected by time-
reversal symmetry and crystalline symmetry. They
belong to a larger class of topological phases called
symmetry-protected topological (SPT) phases.
The famous Haldane phase of odd-integer spin chain
is another example of the SPT phase. It is protected by
SO(3) spin symmetry. In addition, there are also topolog-
ical phases not related to (and protected by) symmetry,
such as the fractional quantum Hall state.
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