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I. TWO-DIMENSIONAL MATERIAL

A. Graphene

A graphene lattice is a honeycomb (or hexagonal) lat-
tice that consists of two triangular lattices (Fig. 1). We
will call them sublattice-A and sublattice-B. Write the
basis vectors of lattice-A as a; and ag, then a general
lattice vector

R =nja; + nsas, ny,ne € Z.

(1.1)

For convenience, we will have an extra vector az such
that (see Fig. 1(a))

a; = V3ai, (1.2)
3 3

ag = —%aa}—i— 5(11), (1.3)
3 3

az = —%ai—iag). (1.4)

Note that ap = v3a ~ 2.46A is the lattice constant of
graphene. From basis vector a; and as, we have the basis
vectors for the reciprocal lattice (see Fig. 1(b)),

2 (1 1
by = 2 (it 29 1.5
= (e ga). (1)
2w 2 .
by = 224, (1.6)

a 3

(a)

]

FIG. 1 (a) A graphene lattice consists of two triangular lat-

tices: sublattice-A (green dots) and -B (orange dots). (b)
Reciprocal lattice of sublattice-A.
Furthermore, choose the displacement vectors:
3 1
0 = ga;%—k iag, (1.7)
V3 1
0 = ——at + —ay 1.8
2 5 af + 599, (1.8)
53 = —ag}. (19)

For graphene, sublattice-A is displaced by 8; with respect
to sublattice-B. A general lattice vector for sublattice-B
can be written as R + 6.

Suppose electron spin can be ignored. Write the cre-
ation and annihilation operators for sublattice-A and -
B as CI{,CR and d;Hél,dRJﬂ;l, then the tight-binding
Hamiltonian for graphene is

H = Hyy + Hvyn + Hon—site- (1.10)
We have included only the nearest-neighbor (NN) hop-
pings between A-B sublattcies, the next-nearest-neighbor
(NNN) hoppings among A (or B) sublattice, and the on-
site interactions:

Ay =1t (d;+5lcR +dh s, cR + d}H&BcR) +h.c.,
R

Hyyy = to Z (C;_,'_alCR + 6114_3263 + CI{+330R)
R

T 2 Z (d;+51+a1 dR+61 + d;+51+a2dR+61
R

+ d£+51+a3dR+51) + hec., (1.11)



and

Hyp—site = A Z CI{CR -A Z dI{+51 dR+51 ,
R R

in which ¢, to are hopping amplitudes, and 2A(> 0) is
the difference of on-site energies between two sublattices.
The hopping amplitudes are assumed to be real-valued
for simplicity.

Impose the periodic boundary condition on the
graphene sheet, then the system has translation symme-
try and we can rely on Fourier transformation to diago-
nalize the Hamiltonian. Write

1 kR
R = —F— e ey, 1.12
R \/Nzk: K (1.12)
1 ,
or ¢ = \/—NZe*’k'RcR, (1.13)
R

in which NV is the total number of lattice points in one
sublattice, and

1 ik
dris, = ﬁzezk (BF01) g,
k

1 .
or dyx = ﬁze_lk'(R+5l)dR+al- (1.15)
R

(1.14)

With the Fourier transformation, one has, for example,

]_ . /7 . i /.
E dTR+51 CR = N E E € ik’ —k) Re k-0 d;r{/Ck
R kk’ R

_ e,
k
in which the orthogonality relation has been used,

>R = N
R

(1.16)

(1.17)

After some more calculations, we have

H =1 Z (e7h0r 4 emikeda y omikeda) g oy
k

+ t Z (e7iear 4 gmikoaz 4 gmikoas) CLCk
k

+ to Z (e—ik~a1 | emikaz | e—ik~a3) dek e
k

+ A Z (chk — dek>
k

= (wp (3)

k

(1.18)

(1.19)

For each momentum k, we have an independent subsys-
tem described by a 2 x 2 matrix,

2t cosk-a; + A
H(k) = < ? %ZZ, o—ikd;
= ho(k) + h(k) - o,

tl Zz eik»éi
2ty ) ,cosk-a; — A

(1.20)

FIG. 2 (a) The Brillouin zone of graphene. The corner points
differ by reciprocal lattice vectors are considered equivalent.
Hence, the 3 points connected by dotted lines are equivalent
to point-K;, while the other three are equivalent to point Ka.
(b) The conduction band and valence band in the two-band
graphene model (t; = 1,¢2 = 0, A = 0.2). Fig. from online
course on topology in condensed matter, Delft Univ.

where

ho(k) = 2t2§:cosk~ai7 (1.21)

(tl Z cosk - 6,-, —11 Z sink - (Si, A) (122)

The eigen-energies for the subsystem H(k) are

h(k)

e+ (k) = ho(k) & [h(k)], (1.23)

where

||

\/3t%+2t% (cosk-aj +cosk-as + cosk-az) + A2

- \/3t§ + 212 (k) 4 A2, (1.24)
in which we have used
01 — 02 = a;,02 — 03 = ag,and 43 — 6, = a3.  (1.25)
Substitute in the values of a;, we then have
f(k) = cosk-a; +cosk-as+cosk-ag (1.26)

3 3
= cos V3ak, + 2 cos gakx cos iaky. (1.27)

When plotted, the conduction band and the valence band
are separated by an energy gap 2A (Fig. 2) at the corners
of the hexagonal Brillouin zone called Dirac points.

1. Symmetries
A graphene Hamiltonian could have the following sym-
metries:

1. Time-reversal symmetry (TRS),

(1.28)



This gives

hx(_k) = hx(k)a hy(_k) = _hy(k)a hz(_k) = hz(k)'
(1.29)
2. Space-inversion symmetry (SIS) with respect to the
center of a hexagon,

o.H(=k)o, = H(k). (1.30)

This gives
hz(_k) = hl(k)’ hy(_k) = _hy(k)a hz(_k) = _hz(k)
(1.31)

If both symmetries exist, then h.(= A here) must be
zero. Conversely, the energy gap 2A can be opened when
either TRS or SIS is broken.

3. C3 symmetry around the z-axis passing through the
center of a hexagon,

H(Rgx/3k) = H(k), (1.32)

where Ryr /3 is the rotation matrix around the z-axis. If
A = 0, then there is also a reflection symmetry with re-
spect to a mirror plane perpendicular to the graphene
plane that passes through the midpoint of a carbon-
carbon bond.

In addition to A being zero, if t5 is also zero (i.e. elec-
trons hop only between A, B sublattices), then H(k) does
not have diagonal matrix elements, and we have

4. Chiral symmetry (aka Sublattice symmetry),

{H,o.} =0. (1.33)

This leads to

e (k) = —e4 (K). (1.34)

That is, the energy eigenvalues would appear in pairs
with opposite energies. However, this is not an exact
symmetry of real graphene.

Before moving on, there is a subtle point regarding the
Hamiltonian H(k) (Cayssol and Fuchs, 2021): It is not
invariant under the reciprocal lattice translation, k —
k + by . If, for sublattice-B, we write dg instead of
dr+s,, then

dR+8, = AR+6,-6,, AR+5; — dR+65-6,-  (1.35)

The Hamiltonian in Eq. (1.20) becomes

H/(k) . 2t2 ZZ cosk - a; + A tl Zi eik-(lsi*(sl)
o tp >, e @i=8) 9, 5™ cosk-a; — A
= UH(k)UT, (1.36)
where
1 0
o- (1.5 as

The off-diagonal matrix elements of H' now depend on
ag, ag because of Eq. (1.25). Hence, H' is invariant under
the reciprocal lattice translation, k — k+ by 5. It differs
from H by a gauge transformation U.

2. Effective Hamiltonian near Dirac point

The gradient of the f in Eq. (1.27) vanishes, Vf = 0,
when

3 3
sin v/3ak,, + sin gakaj cos gaky =0, (1.38)

3
sin §aky = 0. (1.39)
The second equation gives k, = 0 or 1/3(27/a), and
cos %aky =1 or —1. Solving for k,, we then find out the
extrema of energy bands at two Dirac points and their
equivalent points (Fig. 2)

K, = %” (3\%0) (1.40)
- Z()

One can also pick K; and Ko = —K; as two inequivalent
Dirac points. It follows that f(K;) = f(K2) = —3,
|h(K; 2)| = A, and the energy gap at Dirac points Ae =
2A.
Next, consider the momenta near the Dirac points,
k:Ki+ki, |k1| < ‘KZ|, i:1,2. (142)
Expand the momenta in Hamiltonian H(k) with respect
to K 2, keep the terms linear in k; » and ignore higher-
order terms. Then the diagonal matrix elements H1; and
Hys are simply 6to+£A. The off-diagonal matrix elements
near K; are,

le(k) — t]_ (eiKi'éleiki"sl + eiKi~526iki~52 + 81K75362k153) .

(1.43)
From the table below (choose Ko = —K;),
| i=1 2 3
K -6, = —‘r% —2?71— 0
1.44
Ky 6 = Z +2r 0 (1.44)
ezt —| LBy 1438
we have (k; are now simply written as k)
. 3. 3
ng(k) ~ Ztlak‘ :!351,75 (145)
3 3.

Thus, apart from a constant,

HOG) = Sty a(thy — iky) )

A
Stia(Lky + iky) ~A

= wp(Thkyoy + kyoy) + Ao, (1.47)

where hvp = %tla, and 7 = & for the states near K 5.
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FIG. 3 Distributions of Berry connection (vectors) and Berry
curvature (color) in a Brillouin zone. Fig. from J. Atteia’s
thesis, 2018

3. Berry curvature
Given a two-band Hamiltonian,

H(k) = ho(k) + h(k) - o, (1.48)

the Berry curvature of its electronic states would be

1 dh  0Oh

FE(k) = Fors i
) = Fomsh 51, > ow,

z

(1.49)

Starting from the h vector in Eq. (1.22), one gets

88]:1 = (—tl Z sin(k . 51')51‘95, —t Z COS(k : ‘Si)fsixa O) ,
STh = (—tl Z sin(k . 6i)6iy7 —t1 Z COS(k . 62)67,3;7 0) .
Yy

After some calculations, it follows that

2
FE(k) = :F\/g/ a’*t?A (sink - a; +sink - ay + sink - a3),

- 2p3
(1.50)
in which h can be found in Eq. (1.24). Note that FF (k)
has the periodicity of the Brillouin zone (Fig. 3).
Near the Dirac points 7K (7 = %), the Berry curva-
tures are

9 a2t2A 1 202 A
+ _ 128 F
FZT(k) = iTg hS = T§ h3 5 (151)
where hvp = %tla. For electrons in the valence band
near the +K-valleys,
1 Rz A
Fo(k)==+= e (1.52)
2 (h202.k2 + A2)Y

The Hall conductivity from a filled valence band is zero
because of the cancellation from two valleys.

Sign of F

NS e K
—K K —
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FIG. 4 (a) Brillouin zone of graphene, with valleys K and
—K. (b) Dirac cones at the two valleys. Valence band has
7. = —, and conduction band has 7, = +. The signs of the
Berry curvatures for the conduction bands and the valence
bands are indicated.

Note that the low-energy Hamiltonians in Eq. (1.47)
for the electrons in K; and —K; valleys are time-reversal
conjugate to each other,

H_k (k) = Hik (k). (1.53)
Therefore, the Berry curvatures (as well as orbital mag-
netizations) of the two valleys have opposite signs.

It is left as an exercise to show that the Berry connec-
tions near the Dirac points are,

A (k) = g (1 - \ﬁ) ik—lzy (1.54)
A(k) = % (1 - \ﬁ) q;’;ﬂ” (1.55)
where
U = (Jreik? 1 A2, (1.56)
and N = [2(y—+4A)] 2 (1s7)

4. Degenerate case

In the gapless case with A = 0, the effective Hamilto-
nians near the nodes is

Ho = hup (£keop + kyoy), at £ K (1.58)
= h(k) o, (1.59)

where h(k) = «a(+k,, ky,0). The spins of the electron
eigenstates on the Fermi circles are either parallel or
anti-parallel to the field h(k). Therefore, after circling
the Fermi circle once, an electron acquires a Berry phase
proportional to the solid angle ¢ extended by the spin
vector,

Y+ = :F%QC“ (1.60)
Since the spin always lies on a plane, the solid angle is
27, and the Berry phases are v, = Fm.

Note that the value of the Berry phase yv¢ = 7 is re-
stricted by time-reversal symmetry: If the electron cir-
cles in the opposite direction —C', then the Berry phase
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FIG. 5 (a) The alternating flux distribution in the Haldane
model. (b) The distribution in (a) can be implemented by al-
ternating phases associated with NNN hoppings. (¢) A NNN
hopping consisted of two NN hoppings, d%j followed by d?j.

becomes —7.. As a result, we should have 7. = —~,
mod 27. Therefore, 7. can only be 0 or 7.

Due to the phase shift of 7 for a closed path, one ex-
pects to see weak anti-localization, instead of weak
localization, in a graphene or a TI surface with disor-
ders (He et al., 2011). However, real samples are more
complicated. Depending on condition, both types of lo-
calization can be observed (Lu and Shen, 2014; Tikho-
nenko et al., 2009).

The value of the Berry phase remains to be 7, irrespec-
tive of the size of the Fermi circle, as long as the path
C encloses the nodal point. This implies that the Berry
curvature is a delta function,

FL = +n6*(k).

z

(1.61)

This is consistent with the A — 0 limit of Eq. (1.51).

Not only that the two orbitals have opposite monopole
charges, the Berry curvatures of the two nodes also have
opposite signs, see Fig. 4(b). As a result, the Hall con-
ductivity is zero in the absence of magnetic field.

The Berry curvature of the Dirac point has an effect
on the position of energy levels in magnetic field. In a
magnetic field perpendicular to the graphene sheet, an
electron would circle around the Dirac cone and have the
Berry phase of 7. According to the Onsager quantiza-
tion rule (Chang and Niu, 1996),

1 1
k-dr=2 - —— .
fg r w(n—i—z 277)

The Berry phase term cancels with the 1/2, so that
there is no zero-point energy for Landau levels, ¢, =
vpv2eBhn. See Sec. VII.C of Xiao et al., 2010 for a
semiclassical derivation of the energy levels. A direct
measurement of the Berry phase 7 from a Dirac point in
cold atoms is reported in Duca et al., 2015.

(1.62)

B. Haldane model

1. Haldane flux

The pristine graphene model considered above is topo-
logically trivial. Haldane added a spatially alternating
magnetic field to graphene (Fig. 5(a)) so that the elec-
tronic states could become topologically nontrivial (Hal-
dane, 1988). To implement this, the phase associated
with electron hopping is designed in the following way

(Fig. 5(b)):

Ri — Ry+a;gete ™ i=1,23 (1.63)
Ra — Ra—a; get e™?, (1.64)
Rz — R4 +a; get e, (1.65)
Rz — Ry —a; get e . (1.66)

As a result, the NNN hoppings between sites 7, j among
sublattice-A (or -B) become

Hynn =ts Z eviitele;, (1.67)
<i,j>
where (see Fig. 5(c))
vij = sgn (dj; x d}) (1.68)
That is,
3
Hyny = to Z Z (C;JraiCRe_w) + hC)
R i=1
3
+ 230D (dhya dre™ + hc.) .(1.69)
R i=1
After Fourier transformation, we have, e.g.,
(1.70)

T —i¢ _ —ik-a; —i¢ T
E CRta,CRE = e e "?q.ck.
R k

After some calculations, we have

Hynn
= 2ty Z Z [cos(k ~a; + ¢>CLCk +cos(k-a; — gb)dek
ki

= 32 (el P19 ( 0 ) .
where
Hov v (K) = 2t ( > COS(IB- a; +¢) > COS(}? 2~ &) ) .
(1.72)

After including the H Ny and ﬁon_sm obtained ear-
lier, the total Hamiltonian can be written as

h h
e o

H(k) 5 , (1.73)



FIG. 6 (a) The quantum phases of the Haldane model. Fig.
from J. Atteia’s thesis, 2018. (b) Schematic plots of the Berry
curvatures for point-1 in (a)-left, and point-2 in (a)-right.

in which hjq, hoo are the diagonal matrix elements of
HNNN7 and

hi —h
h = <t12cosk-5i,—t12sink-5i,11222+A> :

(1.74)
The third component of h,

hy(k) = %+A

= —2t; ) sink-a;sing+A.  (1.76)

K2

(1.75)

It can be shown that, near K; and —Kj,

hs(k) = £33ty sin ¢ + A + O(k?). (1.77)

This can be considered as a flux-dependent (and valley-
dependent) Dirac mass hy = m, (¢, A), such that near
7K(1 = 4),

_ hi1 + haa

H. (k) "
" 2 hp (ks + iky) —m

(1.78)

2. Berry curvature

From Eq. (1.51), the Berry curvatures for conduction
band near the Dirac points are

2,2
Frk)=_ Wopmr (1.79)
2 (R2v2k2 +m2)*/?
The energy gap is closed when
m(p,A) = £3V3tasind + A = 0. (1.80)

hwp (Thy — iky) )

(a) ° . (b) . .

\/m— — "M \/mK — _ny
/N /N /N N
FIG. 7 (a) Graphene lattice with staggered on-site potentials
opens a gap at a Dirac point, which is described by a mass. (b)
A special distribution of magnetic flux invented by Haldane
also opens a gap at a Dirac point, which is described by a
valley-dependent mass.

+
K

Depending on the parameters A, ¢, the effective mass can
be positive or negative, which leads to different topolog-
ical phases (see Fig. 6). For example, when ¢ = 0, then
m+ = A and the Berry curvatures F.f, at +K; have op-
posite signs. The Chern number of a filled band is zero
and the insulator phase is trivial .

On the other hand, when A = 0, then m4 have oppo-
site signs at £Kj, so that the Berry curvatures F;Li have
the same sign at two Dirac points (whether this sign is
positive or negative is dependent on the direction of flux
¢). As a result, the Chern number of a filled band is
nonzero and the insulator phase has nontrivial topology.
Suppose ¢ > 0, and A(> 0) is turned on from zero, then
the system remains topological when A < 3v/3t, sin ¢,
until the energy gap at —K; closes (m_ = 0). Such
a closure flips the signs of the Berry curvatures of the
conduction band and the valence band at —K;, and the
systems enters the trivial phase. Fig. 7 is a comparison
of the Berry curvatures between the usual graphene and
the graphene with Haldane flux.

Two remarks about Haldane’s graphene model: First,
with proper tuning of model parameters, it’s possible not
to open the two nodes simultaneously. That is, there can
be only one Dirac point, not two, at critical values. This
demonstrates the parity anomaly in (2+1)-dimensional
field theories.

C. Transition Metal Dichalcogenide

Transition metal dichalcogenide (TMD) is a class
of chemical compound containing transition metals and
chalcogens. Chalcogen refers to group-16 elements such
as oxygen O, sulfur S, selenium Se, and tellurium Te.
The chemical formula of TMD is MX,, where M is a
transition metal atom, and X a chalcogen atom. TMD
could form layered structure similar to the graphene lay-
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FIG. 8 The 1H, 1T, and 1T’ structures of monolayer MXs.
Fig. from Qian et al., 2014.

ers. Both graphene and layered TMD belong to a larger
class of layered materials called van de Waals mate-
rials (which also include h-BN, black phosphorous, Crls
etc), because of the van der Waals binding force between
these layers. They provide a major playground for vari-
ous exciting physics of two-dimensional electrons.

Several TMDs could be stable as a monolayer. For
exmaple, the compounds of
Group IV: Ti, Zr, Hf
Group V: V, Nb, Ta
Group VI: Mo, W.
We'll focus on group-VI compounds that have observed
topological phases. One monolayer of these TMDs may
have one of the structures shown in Fig. &:
Trigonal prismatic structure (1H),
Octahedral structure (17T), or
Distorted octahedral structure (1T7).
The distorted sructure 1T’ is more stable than 1T. Note
that a monolayer under strain could transit to a different
structure.

with S, Se, Te.

Let’s focus on one of the group-VI compounds: MoSs.
It has indirect band gap for bulk material, but direct
band gap (about 1.9 eV) for a monolayer. Similar to
graphene, a MoSs monolayer has a hexagonal Brillouin
zone, with Dirac points at corners (Fig. 9). What is
different is that in a TMD,

1. There is no inversion symmetry, so that the Dirac
points are gapped.

2. There is a large spin-orbit (SO) coupling due to the
d-orbitals of the transition metal atoms. This results
in spin-valley locking, which is favourable for spintronics
applications.

To first order in k, a 4-band Hamiltonian near the
Dirac points can be written as Hyx4 = Ho + Hso (Xiao

FIG. 9 (a) Conduction and valence bands near the Dirac
points. Fig. from Xiao et al., 2012. (b) The valence bands
are gapped by spin-orbit coupling (and the breaking of space-
inversion symmetry), while the conduction bands have little
SO-splitting. Time-reversal symmetry requires the spins to
be opposite at opposite valleys.

et al., 2012), where

Hy = a(tkyo, + kyoy) + Ao,
o, —1
2

(1.81)
HSO = —)\T

s2, (1.82)

in which 7 = 4+ for £K-valley, o refers to the quasi-
spin of sublattices, and s, relates to electron spin. The
SO-gap of the valence bands is given by 2\ ~ 0.2 eV.
Suppose only the conduction band and the upper valence
band (75, = +1) are active, then we can ignore the lower
valence band and study the 2-band Hamiltonian,

A
H = a(tky0, + kyoy) + Ao, + 5’

where A’ = A — \/2. The band energies near the Dirac
points are

(1.83)

A
eV = £V a2k2 + A + 3 (1.84)
The last term in H contributes to a constant energy shift
that does not affect the Berry curvature.

1. Berry curvature

Based on earlier calculations such as Eq. 1.51, we know
that the Berry curvature of the conduction band would
be

T a?A
FT(k) = =7 (1.85)
2 [a2k2 + A2V
On the other hand, the Berry curvature for the valence
band F] (k) = —F7 (k).



For one valley in a partially-filled conduction band, the
Berry curvature contributes to the Hall conductivity (in
units of e2/h),

1
o = — | d®kFT(k 1.
o = 5 [ ERE) (1.56)

A/
= T 1—

2 \/a2k%+A’2

Suppose the chemical potential is measured from the bot-
tom of the conduction band, then

(1.87)

p=cp, —A. (1.88)

That is, g = 0 when kr = 0. The Hall conductivity can
be written as

oy = (1.89)

(1.90)

The sum of the Hall conductivities from two valleys is
Zero.

On the other hand, for partially-filled upper wvalence
band, suppose the chemical potential is measured from
the top of the valence band, then

p=cp.—(=A+N). (1.91)

The Hall conductivity

1
n = — | d®kF](k 1.92
o = 5= [ ERFI (192

AI
= —% 11— — (1.93)
T M

= - 1.94
2pu—A+ % ( )

Again the sum of the Hall conductivities from two valleys
is zero.

In order to have a non-zero Hall conductivity, the pop-
ulations of the electrons (or holes) in two valleys need be
different. Assume the chemical potentials of electrons in
+K valley are pi g, and Ay = pg — pi—g. Suppose i+ g
are much smaller than the energy gap ¢, = 2A — A, then
the total Hall conductivity

oy = of +og (1.95)
Ap Ap
~ = —. 1.
2A - X g (1.96)

For a two-dimensional system, pu = (h?/2m)27n, where
n is the electron density. Therefore (putting e?/h back),

e\ B2 rAn €%k An
cg~|—|— = .
" h)m e, 2m e,

This is called the valley Hall effect.

(1.97)
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FIG. 10 Optical transitions induced by circularly polarized
light. Fig. from Xiao et al., 2012.

2. Optical transitions

One can use circularly-polarized light to pump elec-
trons to a preferred valley. Write the matrix element
of momentum operator as Py(k) = (Yc|pe|tpy) (¢ =
z,y). The transition probabilities due to oy circularly-
polarized light are proportional to Py = |P, £ i’Py\Q.

The effective Hamiltonian near Dirac points are

_ A’ a(rky —iky)
H(k) = (a(Tk’z +ik,) —A/ > o (198)

with the eigenstates

uC:N< A’+\ﬁ)>7 UU:N<()4(Tk$iky)>7

a(tky + ik, A+ N
(1.99)
where
J = Vak? £ A7, (1.100)
and N = 20 (y—+A)] Y2 (a0
It is known that
m OH(k)
(Welplyn) = 5 (ucl =5, = luw), (1.102)
and
OH(k) OH(y)
== xy AT — . 1.1
ok, T ok, T A% (1.103)
After some calculations, we have
2
A/
Pik) =0’ (1 7T———x | . (1.104)

The carriers near K-valley and K’'-valley respond differ-
ently to right (or left) circularly-polarized light. Pump
different amount of electrons to two valleys so that Ay #
0, one can then detect the valley Hall effect given in
Eq. 1.97 (Mak et al., 2014).



D. Twisted bilayer graphene

Suppose there are two overlapped graphene sheets,
and layer-1 is on top of layer-2. Layer-1 (layer-2) is ro-
tated clockwise (counter-clockwise) with a small angle
6/2. These two sheets with slightly different orientations
would visually form an interference pattern called the
Moiré pattern, as shown in Fig. 11(a). The Moiré pattern
has a pattern of a superlattice with hexagonal symmetry.
Upon closer look, there are 3 different types of stacking,
AA, AB, and BA near symmetry points. That is, A-
site on top of A-site, A-site on top of B-site etc. When
the angular difference 6 between two sheets is small, the
distance between two neighboring AA sites

L=—2_ (1.105)

2sin g
Note: Rigorously speaking, there is a periodic superlat-
tice only when the positions of the two graphene lay-
ers are commensurate. However, even if not, a non-
commensurate overlap would produce a Moiré pattern
with similar electronic property to a commensurate one
nearby. Hence we will ignore such a quasi-periodicity.
This superlattice has a corresponding mini-BZ, as
shown in Fig. 11(b). If Kp is the distance between two
neighboring Dirac points of a graphene sheet, then the
scale of the mini-BZ
.0
k¢ = 2K p sin 7 (1.106)
In reality, two graphene sheets are known to be separated
by Az ~ 2.35A. Furthermore, there is a slight undulation
in the graphene sheets. The vertical separation for the
AB sotacking is smaller than the AA stacking by about
0.15A.

1. Tight-binding model
The carbon atoms in layer-1 are located at

Ra = Nni1a; +Tlgag+(5a
= R+06,, a=AB

(1.107)
(1.108)

in which 4 = 0, and d g = 9§ is a displacement of a B-site
with respect to a neighboring A-site. The carbon atoms
in layer-2 are located at

(1.109)
(1.110)

R} R' +4d;+d, B=AB
= M(R+d3)+d,
where M is a rotation matrix, and d is a general displace-

ment between two layers.
The Hamiltonian has three parts,

H = H, + Hy + Hys, (1.111)

(b)

FIG. 11 (a) The Moiré pattern of twisted bilayer graphene.
Fig. from Ledwith et al., 2021. (b) The rotated Brillouin
zones of twisted bilayer graphene.

in which ﬁ 1 and flg are the Hamiltonians for layer-1 and
layer-2. Hio describes the coupling between two layers,

Hiy =) > t1 (Ra — Rj) ¢ (Ra)c(R)) + hoc.
R,R’ a,8
(1.112)
The positions for layer-2 are distinguished from those of
layer-1 by having ‘primes’ in their arguments.

We'll rely on the Fourier transformations,

1 .

c(Ra) = —= > e Ry, (1.113)
VN
]_ -1,/ 7

c(R) = — ) e*Rocg. 1.114

The tunnelling amplitudes ¢ (Ra — R%) have a trian-

gular pattern for each pair of («, 8) (see Fig. 11(a)), hence
we can decompose

tr (Ra—Rj) = %Ztiﬂ(q)e"q'(f‘”‘%),
q

conversely, tjy_ﬁ(q) = ZtL(Ra _ R,/B)e—z‘q(Ra—R’B).
Ra



It follows that

Hyp
1 ile. 2 R
T S R Ry R R e
k' o,8 R,R/
= Z Z ( kk/cakcﬂk’ + Tk’kcﬂk’ Cak)
kK o,f
in which
af _ Ot,@ zq R —R —ik-Ro+ik’-R/.
Tkk’—Nz > 2t Ve .
RR q

(1.116)

Write R, R/’B in terms of R, R/, as shown in

Egs. (1.108) and (1.109). Carry out the summation over
R, R’ using the orthogonality relations,

Ze—i(k—q)'R — NZ(Squ,Gn
= G
Zez‘(k’—q)R' = NZék’—q,G'7
= G

in which G, G’ are reciprocal lattice vectors for layer-1
and -2 respectively. This leads to

Tl?lf’ = Z tiﬂ(k - G)e_iG‘éa€+iG/'(5é+d)5k7G,kuG'~
GG

(1.117)

(1.118)

(1.119)
The delta function gives the rule for momentum conser-
vation,

K -G =k-G. (1.120)

For example, if k is located at the K-valley, then it could
couple with k’ at the K’'-valley (call it Q) and the other
two valleys Q1, Q2 via G} — G and G2 — G, (Fig. 12(a)),

where
G, = 2% (+13§c+ ;@) ) (1.121)
Gy = 2% (—13534— ;Q) , (1.122)
and Gg = f%gg}. (1.123)
As a result,
Hyy = ZZ{Q (Qo)dk

kk' «

+ tiﬂ(Ql)B_lGla HiG1(Sptd)yy Gk -G/
I tiﬁ(Q2)6+iG2-6ae*iGg-(55+d)5k+G2,k,+G,2}

¢ o + hec. (1.124)

X

According to Eq. (1.115), the square bracket [ | = Tlff,,

which has the form

Tao = Tap(Qo)di + Tap(Q1)0k—c, 10—,
+ Tap(Q2)0k+G, w+Gy, (1.125)

(1.115)
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in which T,3(Q¢) are the factors multiplying the delta
functions. When being written in matrices, we have

T = T(Qo)dkx + T(Q1)0k-a, x-a;

+ T(Q2)dk1G, k+Gy- (1.126)

For the exponents in Eq. (1.124), we have G’ - §; =
G - 63, and
G-0,—-G'-9; =G (0. —dp). (1.127)
Depending on whether the stacking is AA, AB, or BA,
the difference 8, —dg can be 0, —d, or 6. We can choose

the displacement § = —ag (see Eq. (1.9)), such that

¢iGi=83)| AA  AB  BA
G, 1 i et (1.128)
G, 1 5 '

It follows that, if we write

t=t12(Qu),

1L~
i27/3

v e
T t ,
(Ql) < 6—1271'/3 7y

67i27r/3
T(QQ) =t < ei;lr/?)

(1.129)
then

(1.130)

) etiGrd(1.131)

eG4 (1.132)
.

When 0 = 0, Bernard (AB) stacking is preferred. Thus
AB stacking has a larger tunnelling amplitude compared
to AA stacking, and + is estimated to be 0.7 ~ 0.8.

Finally, the low-energy Hamiltonian near a Dirac point
is,

H = H, + Hy + Hyy (1.133)
=> Yhhwrpo™% - (k — K)
k
. Z?/gk/hUFUJF% (k' = K)o
k/
0 T Y1k
1;( fe v Thye O Vo
in which
+9 1 9 9 —i2s

and (Y1, Yor )T = )T

(C14Kk, C1BK; C24K’ s C2BK!



. |
decoupling at P |
small angle i ‘\‘

|
GS G3,
(b) K
Gy — G, Gy — G}
q3  q2

FIG. 12 (a) The valleys Qo, @1, Q2 could couple with each
other with the conservation of momentum k = k' + G} — G;.
(b) Some vectors in the mini-BZ.

The Schrodinger equation in momentum space would
be

hvpo=% - (k — K) Tyk Y1 (k)
T hpoti - (k' — K') o (K')

_ Y1 (k)
= £ , 5
P2 (k)
in which the column vectors are state functions, instead
of annihilation operators.

Exercise
1. The effective two-band Hamiltonian for graphene
with gapped Dirac points is

Ho = hwp (£kyo, + kyoy) + Ao, near £ K, (1.136)
where vg is the Fermi velocity, o is the quasi-spin for
orbital degrees of freedom (i.e., conduction and valence
bands), and K are the indices for two Dirac valleys.
(a) Using Eq. (1.49), show that the Berry curvatures
FZXK are given by Eq. (1.51).
(b) What would the Berry curvatures become if the Dirac
points are gapless (i.e. A =0)?
2. Starting from Eq. (1.49), show that the Berry curva-
ture of graphene is given as Eq. (1.50).
3. (a) Given the Hamiltonian in Eq. 1.98 and the eigen-

(1.135)
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states in Eq. 1.99, show that the Berry connections are,

A (k) = g <1 - ﬁ) % (1.137)
Ax(k) = % (1 - ﬁ) (:ZZ’”). (1.138)

(b) Verify that the eigenstates can also be
ut =N’ A,+\/7 u =N’ A,_f
oty +iky) ) oty +iky) )

where N' = [2, /7~ (,/ — A")]71/2. Show that the Berry

connections are

T A"\ (+ky)

Az (k) = 5 <11F >k2 . (1.139)
_T A"\ (k)

Af(k) = 3 <1:F ) 5 (1.140)

which are different from the result in (a). Why this an-
swer makes no sense in physics?
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