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I. TWO-DIMENSIONAL MATERIAL

A. Graphene

A graphene lattice is a honeycomb (or hexagonal) lat-
tice that consists of two triangular lattices (Fig. 1). We
will call them sublattice-A and sublattice-B. Write the
basis vectors of lattice-A as a1 and a2, then a general
lattice vector

R = n1a1 + n2a2, n1, n2 ∈ Z. (1.1)

For convenience, we will have an extra vector a3 such
that (see Fig. 1(a))

a1 =
√
3ax̂, (1.2)

a2 = −
√
3

2
ax̂+

3

2
aŷ, (1.3)

a3 = −
√
3

2
ax̂− 3

2
aŷ. (1.4)

Note that a0 =
√
3a ≃ 2.46Å is the lattice constant of

graphene. From basis vector a1 and a2, we have the basis
vectors for the reciprocal lattice (see Fig. 1(b)),

b1 =
2π

a

(
1√
3
x̂+

1

3
ŷ

)
, (1.5)

b2 =
2π

a

2

3
ŷ. (1.6)

𝑎⃗ଵ

ଶ

𝑎⃗ଷ

𝛿ଵ𝛿ଶ

𝛿ଷ

𝑏ଵ

𝑏ଶ
2

3

2𝜋

𝑎

(a) (b)

FIG. 1 (a) A graphene lattice consists of two triangular lat-
tices: sublattice-A (green dots) and -B (orange dots). (b)
Reciprocal lattice of sublattice-A.

Furthermore, choose the displacement vectors:

δ1 =

√
3

2
ax̂+

1

2
aŷ, (1.7)

δ2 = −
√
3

2
ax̂+

1

2
aŷ, (1.8)

δ3 = −aŷ. (1.9)

For graphene, sublattice-A is displaced by δi with respect
to sublattice-B. A general lattice vector for sublattice-B
can be written as R+ δ1.

Suppose electron spin can be ignored. Write the cre-
ation and annihilation operators for sublattice-A and -
B as c†R, cR and d†R+δ1

, dR+δ1 , then the tight-binding
Hamiltonian for graphene is

Ĥ = ĤNN + ĤNNN + Ĥon−site. (1.10)

We have included only the nearest-neighbor (NN) hop-
pings between A-B sublattcies, the next-nearest-neighbor
(NNN) hoppings among A (or B) sublattice, and the on-
site interactions:

ĤNN = t1
∑
R

(
d†R+δ1

cR + d†R+δ2
cR + d†R+δ3

cR

)
+ h.c.,

ĤNNN = t2
∑
R

(
c†R+a1

cR + c†R+a2
cR + c†R+a3

cR

)
+ t2

∑
R

(
d†R+δ1+a1

dR+δ1 + d†R+δ1+a2
dR+δ1

+ d†R+δ1+a3
dR+δ1

)
+ h.c., (1.11)
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and

Ĥon−site = ∆
∑
R

c†RcR −∆
∑
R

d†R+δ1
dR+δ1

,

in which t1, t2 are hopping amplitudes, and 2∆(≥ 0) is
the difference of on-site energies between two sublattices.
The hopping amplitudes are assumed to be real-valued
for simplicity.

Impose the periodic boundary condition on the
graphene sheet, then the system has translation symme-
try and we can rely on Fourier transformation to diago-
nalize the Hamiltonian. Write

cR =
1√
N

∑
k

eik·Rck, (1.12)

or ck =
1√
N

∑
R

e−ik·RcR, (1.13)

in which N is the total number of lattice points in one
sublattice, and

dR+δ1 =
1√
N

∑
k

eik·(R+δ1)dk, (1.14)

or dk =
1√
N

∑
R

e−ik·(R+δ1)dR+δ1
. (1.15)

With the Fourier transformation, one has, for example,∑
R

d†R+δ1
cR =

1

N

∑
k,k′

∑
R

e−i(k′−k)·Re−ik′·δ1d†k′ck

=
∑
k

e−ik·δ1d†kck, (1.16)

in which the orthogonality relation has been used,∑
R

ei(k
′−k)·R = Nδk′k. (1.17)

After some more calculations, we have

Ĥ = t1
∑
k

(
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

)
d†kck

+ t2
∑
k

(
e−ik·a1 + e−ik·a2 + e−ik·a3

)
c†kck

+ t2
∑
k

(
e−ik·a1 + e−ik·a2 + e−ik·a3

)
d†kdk + h.c.

+ ∆
∑
k

(
c†kck − d†kdk

)
(1.18)

=
∑
k

(
c†k, d

†
k

)
H(k)

(
ck
dk

)
. (1.19)

For each momentum k, we have an independent subsys-
tem described by a 2× 2 matrix,

H(k) =

(
2t2
∑

i cosk · ai +∆ t1
∑

i e
ik·δi

t1
∑

i e
−ik·δi 2t2

∑
i cosk · ai −∆

)
= h0(k) + h(k) · σ, (1.20)
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FIG. 2 (a) The Brillouin zone of graphene. The corner points
differ by reciprocal lattice vectors are considered equivalent.
Hence, the 3 points connected by dotted lines are equivalent
to point-K1, while the other three are equivalent to point K2.

(b) The conduction band and valence band in the two-band
graphene model (t1 = 1, t2 = 0,∆ = 0.2). Fig. from online

course on topology in condensed matter, Delft Univ.

where

h0(k) = 2t2
∑
i

cosk · ai, (1.21)

h(k) =

(
t1
∑
i

cosk · δi,−t1
∑
i

sink · δi,∆

)
.(1.22)

The eigen-energies for the subsystem H(k) are

ε±(k) = h0(k)± |h(k)|, (1.23)

where

|h| =
√

3t21 + 2t21 (cosk · a1 + cosk · a2 + cosk · a3) + ∆2

=
√

3t21 + 2t21f(k) + ∆2, (1.24)

in which we have used

δ1 − δ2 = a1, δ2 − δ3 = a2, and δ3 − δ1 = a3. (1.25)

Substitute in the values of ai, we then have

f(k) ≡ cosk · a1 + cosk · a2 + cosk · a3 (1.26)

= cos
√
3akx + 2 cos

√
3

2
akx cos

3

2
aky. (1.27)

When plotted, the conduction band and the valence band
are separated by an energy gap 2∆ (Fig. 2) at the corners
of the hexagonal Brillouin zone called Dirac points.

1. Symmetries

A graphene Hamiltonian could have the following sym-
metries:
1. Time-reversal symmetry (TRS),

H∗(−k) = H(k). (1.28)
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This gives

hx(−k) = hx(k), hy(−k) = −hy(k), hz(−k) = hz(k).
(1.29)

2. Space-inversion symmetry (SIS) with respect to the
center of a hexagon,

σxH(−k)σx = H(k). (1.30)

This gives

hx(−k) = hx(k), hy(−k) = −hy(k), hz(−k) = −hz(k).
(1.31)

If both symmetries exist, then hz(= ∆ here) must be
zero. Conversely, the energy gap 2∆ can be opened when
either TRS or SIS is broken.

3. C3 symmetry around the z-axis passing through the
center of a hexagon,

H(R2π/3k) = H(k), (1.32)

where R2π/3 is the rotation matrix around the z-axis. If
∆ = 0, then there is also a reflection symmetry with re-
spect to a mirror plane perpendicular to the graphene
plane that passes through the midpoint of a carbon-
carbon bond.

In addition to ∆ being zero, if t2 is also zero (i.e. elec-
trons hop only between A, B sublattices), then H(k) does
not have diagonal matrix elements, and we have

4. Chiral symmetry (aka Sublattice symmetry),

{H, σz} = 0. (1.33)

This leads to

ε−(k) = −ε+(k). (1.34)

That is, the energy eigenvalues would appear in pairs
with opposite energies. However, this is not an exact
symmetry of real graphene.

Before moving on, there is a subtle point regarding the
Hamiltonian H(k) (Cayssol and Fuchs, 2021): It is not
invariant under the reciprocal lattice translation, k →
k + b1,2. If, for sublattice-B, we write dR instead of
dR+δ1 , then

dR+δ2
→ dR+δ2−δ1

, dR+δ3
→ dR+δ3−δ1

. (1.35)

The Hamiltonian in Eq. (1.20) becomes

H′(k) =

(
2t2
∑

i cosk · ai +∆ t1
∑

i e
ik·(δi−δ1)

t1
∑

i e
−ik·(δi−δ1) 2t2

∑
i cosk · ai −∆

)
= UH(k)U†, (1.36)

where

U =

(
1 0
0 eik·δ1 .

)
(1.37)

The off-diagonal matrix elements of H′ now depend on
a2,a3 because of Eq. (1.25). Hence, H′ is invariant under
the reciprocal lattice translation, k → k+b1,2. It differs
from H by a gauge transformation U.

2. Effective Hamiltonian near Dirac point

The gradient of the f in Eq. (1.27) vanishes, ∇f = 0,
when

sin
√
3akx + sin

√
3

2
akx cos

3

2
aky = 0, (1.38)

sin
3

2
aky = 0. (1.39)

The second equation gives ky = 0 or 1/3(2π/a), and
cos 3

2aky = 1 or −1. Solving for kx, we then find out the
extrema of energy bands at two Dirac points and their
equivalent points (Fig. 2)

K1 =
2π

a

(
2

3
√
3
, 0

)
, (1.40)

K2 =
2π

a

(
1

3
√
3
,
1

3

)
(1.41)

One can also pick K1 and K2 = −K1 as two inequivalent
Dirac points. It follows that f(K1) = f(K2) = − 3

2 ,
|h(K1,2)| = ∆, and the energy gap at Dirac points ∆ε =
2∆.
Next, consider the momenta near the Dirac points,

k = Ki + ki, |ki| ≪ |Ki|; i = 1, 2. (1.42)

Expand the momenta in Hamiltonian H(k) with respect
to K1,2, keep the terms linear in k1,2 and ignore higher-
order terms. Then the diagonal matrix elements H11 and
H22 are simply 6t2±∆. The off-diagonal matrix elements
near Ki are,

H12(k) = t1
(
eiKi·δ1eiki·δ1 + eiKi·δ2eiki·δ2 + eiKi·δ3eiki·δ3

)
.

(1.43)
From the table below (choose K2 = −K1),

i = 1 2 3

K1 · δi = + 2π
3 − 2π

3 0

K2 · δi = − 2π
3 + 2π

3 0

eiK1/2·δi = − 1
2 ∓

√
3
2 i − 1

2 ±
√
3
2 i 1

(1.44)

we have (ki are now simply written as k)

H12(k) ≃ it1ak ·
(
∓3

2
i,−3

2

)
(1.45)

= t1a

(
±3

2
kx − 3

2
iky

)
. (1.46)

Thus, apart from a constant,

H(k) ≃

(
∆ 3

2 t1a(±kx − iky)
3
2 t1a(±kx + iky) −∆

)
= ℏvF (τkxσx + kyσy) + ∆σz, (1.47)

where ℏvF ≡ 3
2 t1a, and τ = ± for the states near K1/2.
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FIG. 3 Distributions of Berry connection (vectors) and Berry
curvature (color) in a Brillouin zone. Fig. from J. Atteia’s
thesis, 2018

3. Berry curvature

Given a two-band Hamiltonian,

H(k) = h0(k) + h(k) · σ, (1.48)

the Berry curvature of its electronic states would be

F±
z (k) = ∓ 1

2h3
h · ∂h

∂kx
× ∂h

∂ky
. (1.49)

Starting from the h vector in Eq. (1.22), one gets

∂h

∂kx
=
(
−t1

∑
sin(k · δi)δix,−t1

∑
cos(k · δi)δix, 0

)
,

∂h

∂ky
=
(
−t1

∑
sin(k · δi)δiy,−t1

∑
cos(k · δi)δiy, 0

)
.

After some calculations, it follows that

F±
z (k) = ∓

√
3/2

2h3
a2t21∆(sink · a1 + sink · a2 + sink · a3) ,

(1.50)
in which h can be found in Eq. (1.24). Note that F±

z (k)
has the periodicity of the Brillouin zone (Fig. 3).

Near the Dirac points τK1(τ = ±), the Berry curva-
tures are

F±
zτ (k) = ±τ 9

8

a2t21∆

h3
= ±τ 1

2

ℏ2v2F∆
h3

, (1.51)

where ℏvF = 3
2 t1a. For electrons in the valence band

near the ±K-valleys,

F−
z±(k) = ±1

2

ℏ2v2F∆
(ℏ2v2F k2 +∆2)

3/2
. (1.52)

The Hall conductivity from a filled valence band is zero
because of the cancellation from two valleys.

K−K BZ
+

−

−

+

−K Kτz=+

τz=−

Sign of F

(a) (b)

FIG. 4 (a) Brillouin zone of graphene, with valleys K and
−K. (b) Dirac cones at the two valleys. Valence band has
τz = −, and conduction band has τz = +. The signs of the
Berry curvatures for the conduction bands and the valence
bands are indicated.

Note that the low-energy Hamiltonians in Eq. (1.47)
for the electrons in K1 and −K1 valleys are time-reversal
conjugate to each other,

H−K(k) = H∗
K(−k). (1.53)

Therefore, the Berry curvatures (as well as orbital mag-
netizations) of the two valleys have opposite signs.
It is left as an exercise to show that the Berry connec-

tions near the Dirac points are,

A±
x (k) =

τ

2

(
1− ∆

√

)
±ky
k2

, (1.54)

A±
y (k) =

τ

2

(
1− ∆

√

)
∓kx
k2

, (1.55)

where

√ ≡
√
ℏ2v2F k2 +∆2, (1.56)

and N ≡
[
2
√ (√

+∆
)]−1/2

. (1.57)

4. Degenerate case

In the gapless case with ∆ = 0, the effective Hamilto-
nians near the nodes is

H0 = ℏvF (±kxσx + kyσy) , at ±K (1.58)

= h(k) · σ, (1.59)

where h(k) = α(±kx, ky, 0). The spins of the electron
eigenstates on the Fermi circles are either parallel or
anti-parallel to the field h(k). Therefore, after circling
the Fermi circle once, an electron acquires a Berry phase
proportional to the solid angle ΩC extended by the spin
vector,

γ± = ∓1

2
ΩC . (1.60)

Since the spin always lies on a plane, the solid angle is
2π, and the Berry phases are γ± = ∓π.
Note that the value of the Berry phase γC = π is re-

stricted by time-reversal symmetry: If the electron cir-
cles in the opposite direction −C, then the Berry phase
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FIG. 5 (a) The alternating flux distribution in the Haldane
model. (b) The distribution in (a) can be implemented by al-
ternating phases associated with NNN hoppings. (c) A NNN
hopping consisted of two NN hoppings, d1

ij followed by d2
ij .

becomes −γc. As a result, we should have γc = −γc
mod 2π. Therefore, γc can only be 0 or π.

Due to the phase shift of π for a closed path, one ex-
pects to see weak anti-localization, instead of weak
localization, in a graphene or a TI surface with disor-
ders (He et al., 2011). However, real samples are more
complicated. Depending on condition, both types of lo-
calization can be observed (Lu and Shen, 2014; Tikho-
nenko et al., 2009).

The value of the Berry phase remains to be π, irrespec-
tive of the size of the Fermi circle, as long as the path
C encloses the nodal point. This implies that the Berry
curvature is a delta function,

F−
z± = ±πδ2(k). (1.61)

This is consistent with the ∆ → 0 limit of Eq. (1.51).

Not only that the two orbitals have opposite monopole
charges, the Berry curvatures of the two nodes also have
opposite signs, see Fig. 4(b). As a result, the Hall con-
ductivity is zero in the absence of magnetic field.

The Berry curvature of the Dirac point has an effect
on the position of energy levels in magnetic field. In a
magnetic field perpendicular to the graphene sheet, an
electron would circle around the Dirac cone and have the
Berry phase of π. According to the Onsager quantiza-
tion rule (Chang and Niu, 1996),

∮
C

k · dr = 2π

(
n+

1

2
− γC

2π

)
. (1.62)

The Berry phase term cancels with the 1/2, so that
there is no zero-point energy for Landau levels, εn =
vF

√
2eBℏn. See Sec. VII.C of Xiao et al., 2010 for a

semiclassical derivation of the energy levels. A direct
measurement of the Berry phase π from a Dirac point in
cold atoms is reported in Duca et al., 2015.

B. Haldane model

1. Haldane flux

The pristine graphene model considered above is topo-
logically trivial. Haldane added a spatially alternating
magnetic field to graphene (Fig. 5(a)) so that the elec-
tronic states could become topologically nontrivial (Hal-
dane, 1988). To implement this, the phase associated
with electron hopping is designed in the following way
(Fig. 5(b)):

RA → RA + ai get e
−iϕ, i = 1, 2, 3 (1.63)

RA → RA − ai get e
+iϕ, (1.64)

RB → RA + ai get e
+iϕ, (1.65)

RB → RA − ai get e
−iϕ. (1.66)

As a result, the NNN hoppings between sites i, j among
sublattice-A (or -B) become

ĤNNN = t2
∑

≪i,j≫
eiνijϕc†i cj , (1.67)

where (see Fig. 5(c))

νij ≡ sgn
(
d1
ij × d2

ij

)
z
. (1.68)

That is,

ĤNNN = t2
∑
R

3∑
i=1

(
c†R+ai

cRe
−iϕ + h.c.

)
+ t2

∑
R

3∑
i=1

(
d†R+ai

dRe
+iϕ + h.c.

)
.(1.69)

After Fourier transformation, we have, e.g.,∑
R

c†R+ai
cRe

−iϕ =
∑
k

e−ik·aie−iϕc†kck. (1.70)

After some calculations, we have

ĤNNN

= 2t2
∑
k

∑
i

[
cos(k · ai + ϕ)c†kck + cos(k · ai − ϕ)d†kdk

]
=
∑
k

(
c†k, d

†
k

)
HNNN (k)

(
ck
dk

)
(1.71)

where

HNNN (k) = 2t2

( ∑
i cos(k · ai + ϕ) 0

0
∑

i cos(k · ai − ϕ)

)
.

(1.72)
After including the ĤNN and Ĥon−site obtained ear-

lier, the total Hamiltonian can be written as

H(k) =
h11 + h22

2
+ h · σ, (1.73)
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FIG. 6 (a) The quantum phases of the Haldane model. Fig.
from J. Atteia’s thesis, 2018. (b) Schematic plots of the Berry
curvatures for point-1 in (a)-left, and point-2 in (a)-right.

in which h11, h22 are the diagonal matrix elements of
HNNN , and

h =

(
t1
∑
i

cosk · δi,−t1
∑
i

sink · δi,
h11 − h22

2
+ ∆

)
.

(1.74)
The third component of h,

h3(k) =
h11 − h22

2
+ ∆ (1.75)

= −2t2
∑
i

sink · ai sinϕ+∆. (1.76)

It can be shown that, near K1 and −K1,

h3(k) = ±3
√
3t2 sinϕ+∆+O(k2). (1.77)

This can be considered as a flux-dependent (and valley-
dependent) Dirac mass h3 = mτ (ϕ,∆), such that near
τK(τ = ±),

Hτ (k) =
h11 + h22

2
+

(
mτ ℏvF (τkx − iky)

ℏvF (τkx + iky) −mτ

)
.

(1.78)

2. Berry curvature

From Eq. (1.51), the Berry curvatures for conduction
band near the Dirac points are

F+
zτ (k) =

τ

2

ℏ2v2Fmτ

(ℏ2v2F k2 +m2
τ )

3/2
. (1.79)

The energy gap is closed when

m±(ϕ,∆) = ±3
√
3t2 sinϕ+∆ = 0. (1.80)

K K
m m

−
=

+

−

−

+

K K
m m

−
= −

−

+

−

+

(a) (b)

+

−

−

−
+

+

+ +

+
−

−

−

FIG. 7 (a) Graphene lattice with staggered on-site potentials
opens a gap at a Dirac point, which is described by a mass. (b)
A special distribution of magnetic flux invented by Haldane
also opens a gap at a Dirac point, which is described by a
valley-dependent mass.

Depending on the parameters ∆, ϕ, the effective mass can
be positive or negative, which leads to different topolog-
ical phases (see Fig. 6). For example, when ϕ = 0, then
m± = ∆ and the Berry curvatures F+

z± at ±K1 have op-
posite signs. The Chern number of a filled band is zero
and the insulator phase is trivial .

On the other hand, when ∆ = 0, then m± have oppo-
site signs at ±K1, so that the Berry curvatures F+

z± have
the same sign at two Dirac points (whether this sign is
positive or negative is dependent on the direction of flux
ϕ). As a result, the Chern number of a filled band is
nonzero and the insulator phase has nontrivial topology.
Suppose ϕ > 0, and ∆(> 0) is turned on from zero, then
the system remains topological when ∆ < 3

√
3t2 sinϕ,

until the energy gap at −K1 closes (m− = 0). Such
a closure flips the signs of the Berry curvatures of the
conduction band and the valence band at −K1, and the
systems enters the trivial phase. Fig. 7 is a comparison
of the Berry curvatures between the usual graphene and
the graphene with Haldane flux.

Two remarks about Haldane’s graphene model: First,
with proper tuning of model parameters, it’s possible not
to open the two nodes simultaneously. That is, there can
be only one Dirac point, not two, at critical values. This
demonstrates the parity anomaly in (2+1)-dimensional
field theories.

C. Transition Metal Dichalcogenide

Transition metal dichalcogenide (TMD) is a class
of chemical compound containing transition metals and
chalcogens. Chalcogen refers to group-16 elements such
as oxygen O, sulfur S, selenium Se, and tellurium Te.
The chemical formula of TMD is MX2, where M is a
transition metal atom, and X a chalcogen atom. TMD
could form layered structure similar to the graphene lay-
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FIG. 8 The 1H, 1T, and 1T’ structures of monolayer MX2.
Fig. from Qian et al., 2014.

ers. Both graphene and layered TMD belong to a larger
class of layered materials called van de Waals mate-
rials (which also include h-BN, black phosphorous, CrI3
etc), because of the van der Waals binding force between
these layers. They provide a major playground for vari-
ous exciting physics of two-dimensional electrons.

Several TMDs could be stable as a monolayer. For
exmaple, the compounds of

Group IV: Ti, Zr, Hf
Group V: V, Nb, Ta with S, Se, Te.
Group VI: Mo, W.

We’ll focus on group-VI compounds that have observed
topological phases. One monolayer of these TMDs may
have one of the structures shown in Fig. 8:

Trigonal prismatic structure (1H),
Octahedral structure (1T), or
Distorted octahedral structure (1T’).

The distorted sructure 1T’ is more stable than 1T. Note
that a monolayer under strain could transit to a different
structure.

Let’s focus on one of the group-VI compounds: MoS2.
It has indirect band gap for bulk material, but direct
band gap (about 1.9 eV) for a monolayer. Similar to
graphene, a MoS2 monolayer has a hexagonal Brillouin
zone, with Dirac points at corners (Fig. 9). What is
different is that in a TMD,
1. There is no inversion symmetry, so that the Dirac
points are gapped.
2. There is a large spin-orbit (SO) coupling due to the
d-orbitals of the transition metal atoms. This results
in spin-valley locking, which is favourable for spintronics
applications.

To first order in k, a 4-band Hamiltonian near the
Dirac points can be written as H4×4 = H0 +HSO (Xiao

(a)

(b)

K-K

0

FIG. 9 (a) Conduction and valence bands near the Dirac
points. Fig. from Xiao et al., 2012. (b) The valence bands
are gapped by spin-orbit coupling (and the breaking of space-
inversion symmetry), while the conduction bands have little
SO-splitting. Time-reversal symmetry requires the spins to
be opposite at opposite valleys.

et al., 2012), where

H0 = α(τkxσx + kyσy) + ∆σz (1.81)

HSO = −λτ σz − 1

2
sz, (1.82)

in which τ = ± for ±K-valley, σ refers to the quasi-
spin of sublattices, and sz relates to electron spin. The
SO-gap of the valence bands is given by 2λ ≃ 0.2 eV.
Suppose only the conduction band and the upper valence
band (τsz = +1) are active, then we can ignore the lower
valence band and study the 2-band Hamiltonian,

H = α(τkxσx + kyσy) + ∆′σz +
λ

2
, (1.83)

where ∆′ ≡ ∆ − λ/2. The band energies near the Dirac
points are

ε
c/v
k = ±

√
α2k2 +∆′2 +

λ

2
. (1.84)

The last term in H contributes to a constant energy shift
that does not affect the Berry curvature.

1. Berry curvature

Based on earlier calculations such as Eq. 1.51, we know
that the Berry curvature of the conduction band would
be

F τ
c (k) =

τ

2

α2∆′[
α2k2 +∆′2

]3/2 . (1.85)

On the other hand, the Berry curvature for the valence
band F τ

v (k) = −F τ
c (k).
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For one valley in a partially-filled conduction band, the
Berry curvature contributes to the Hall conductivity (in
units of e2/h),

στ
H =

1

2π

∫
d2kF τ

c (k) (1.86)

=
τ

2

1− ∆′√
α2k2F +∆′2

 . (1.87)

Suppose the chemical potential is measured from the bot-
tom of the conduction band, then

µ = εckF
−∆. (1.88)

That is, µ = 0 when kF = 0. The Hall conductivity can
be written as

στ
H =

τ

2

(
1−

∆− λ
2

µ+∆− λ
2

)
(1.89)

=
τ

2

µ

µ+∆− λ
2

. (1.90)

The sum of the Hall conductivities from two valleys is
zero.

On the other hand, for partially-filled upper valence
band, suppose the chemical potential is measured from
the top of the valence band, then

µ = εvkF
− (−∆+ λ) . (1.91)

The Hall conductivity

στ
H =

1

2π

∫
d2kF τ

v (k) (1.92)

= −τ
2

1− ∆′√
α2k2F +∆′2

 (1.93)

= −τ
2

µ

µ−∆+ λ
2

. (1.94)

Again the sum of the Hall conductivities from two valleys
is zero.

In order to have a non-zero Hall conductivity, the pop-
ulations of the electrons (or holes) in two valleys need be
different. Assume the chemical potentials of electrons in
±K valley are µ±K , and ∆µ = µK −µ−K . Suppose µ±K

are much smaller than the energy gap εg = 2∆−λ, then
the total Hall conductivity

σH = σ+
H + σ−

H (1.95)

≃ ∆µ

2∆− λ
=

∆µ

εg
. (1.96)

For a two-dimensional system, µ = (ℏ2/2m)2πn, where
n is the electron density. Therefore (putting e2/h back),

σH ≃
(
e2

h

)
ℏ2

m

π∆n

εg
=
e2ℏ
2m

∆n

εg
. (1.97)

This is called the valley Hall effect.

FIG. 10 Optical transitions induced by circularly polarized
light. Fig. from Xiao et al., 2012.

2. Optical transitions

One can use circularly-polarized light to pump elec-
trons to a preferred valley. Write the matrix element
of momentum operator as Pℓ(k) ≡ ⟨ψc|pℓ|ψv⟩ (ℓ =
x, y). The transition probabilities due to σ± circularly-
polarized light are proportional to P± = |Px ± iPy|2.
The effective Hamiltonian near Dirac points are

H(k) =

(
∆′ α(τkx − iky)

α(τkx + iky) −∆′

)
, (1.98)

with the eigenstates

uc = N

(
∆′ +

√

α(τkx + iky)

)
, uv = N

(
−α(τkx − iky)

∆′ +
√

)
,

(1.99)
where

√ ≡
√
α2k2 +∆′2, (1.100)

and N ≡
[
2
√ (√

+∆′)]−1/2
. (1.101)

It is known that

⟨ψc|p|ψv⟩ ⇒
m

ℏ
⟨uc|

∂H(k)

∂k
|uv⟩, (1.102)

and

∂H(k)

∂kx
= ατσx,

∂H(y)

∂ky
= ασy. (1.103)

After some calculations, we have

P±(k) = α2

(
1± τ

∆′√
α2k2 +∆′2

)2

. (1.104)

The carriers near K-valley and K ′-valley respond differ-
ently to right (or left) circularly-polarized light. Pump
different amount of electrons to two valleys so that ∆µ ̸=
0, one can then detect the valley Hall effect given in
Eq. 1.97 (Mak et al., 2014).
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D. Twisted bilayer graphene

Suppose there are two overlapped graphene sheets,
and layer-1 is on top of layer-2. Layer-1 (layer-2) is ro-
tated clockwise (counter-clockwise) with a small angle
θ/2. These two sheets with slightly different orientations
would visually form an interference pattern called the
Moiré pattern, as shown in Fig. 11(a). The Moiré pattern
has a pattern of a superlattice with hexagonal symmetry.
Upon closer look, there are 3 different types of stacking,
AA, AB, and BA near symmetry points. That is, A-
site on top of A-site, A-site on top of B-site etc. When
the angular difference θ between two sheets is small, the
distance between two neighboring AA sites

L =
a

2 sin θ
2

. (1.105)

Note: Rigorously speaking, there is a periodic superlat-
tice only when the positions of the two graphene lay-
ers are commensurate. However, even if not, a non-
commensurate overlap would produce a Moiré pattern
with similar electronic property to a commensurate one
nearby. Hence we will ignore such a quasi-periodicity.

This superlattice has a corresponding mini-BZ, as
shown in Fig. 11(b). If KD is the distance between two
neighboring Dirac points of a graphene sheet, then the
scale of the mini-BZ

kθ = 2KD sin
θ

2
. (1.106)

In reality, two graphene sheets are known to be separated
by ∆z ≃ 2.35Å. Furthermore, there is a slight undulation
in the graphene sheets. The vertical separation for the
AB stacking is smaller than the AA stacking by about
0.15Å.

1. Tight-binding model

The carbon atoms in layer-1 are located at

Rα = n1a1 + n2a2 + δα (1.107)

= R+ δα, α = A,B (1.108)

in which δA = 0, and δB = δ is a displacement of a B-site
with respect to a neighboring A-site. The carbon atoms
in layer-2 are located at

R′
β = R′ + δ′β + d, β = A,B (1.109)

= M (R+ δβ) + d, (1.110)

where M is a rotation matrix, and d is a general displace-
ment between two layers.

The Hamiltonian has three parts,

Ĥ = Ĥ1 + Ĥ2 + Ĥ12, (1.111)

Γ

𝐾

𝐾′

(a)

(b)

𝑘ఏ𝜃

𝐾஽

FIG. 11 (a) The Moiré pattern of twisted bilayer graphene.
Fig. from Ledwith et al., 2021. (b) The rotated Brillouin
zones of twisted bilayer graphene.

in which Ĥ1 and Ĥ2 are the Hamiltonians for layer-1 and
layer-2. Ĥ12 describes the coupling between two layers,

Ĥ12 =
∑
R,R′

∑
α,β

t⊥
(
Rα −R′

β

)
c†(Rα)c(R

′
β) + h.c.

(1.112)
The positions for layer-2 are distinguished from those of
layer-1 by having ‘primes’ in their arguments.

We’ll rely on the Fourier transformations,

c(Rα) =
1√
N

∑
k

eik·Rαcαk, (1.113)

c(R′
β) =

1√
N

∑
k′

eik
′·R′

βcβk′ . (1.114)

The tunnelling amplitudes t⊥

(
Rα −R′

β

)
have a trian-

gular pattern for each pair of (α, β) (see Fig. 11(a)), hence
we can decompose

t⊥
(
Rα −R′

β

)
=

1

N

∑
q

tαβ⊥ (q)eiq·(Rα−R′
β),

conversely, tαβ⊥ (q) =
∑
Rα

t⊥(Rα −R′
β)e

−iq·(Rα−R′
β).
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It follows that

Ĥ12

=
1

N

∑
k,k′

∑
α,β

∑
R,R′

t⊥(Rα −R′
β)e

−ik·Rα+ik′·R′
βc†αkcβk′ + h.c.

=
∑
k,k′

∑
α,β

(
Tαβ
kk′c

†
αkcβk′ + T βα

k′kc
†
βk′cαk

)
, (1.115)

in which

Tαβ
kk′ ≡

1

N2

∑
R,R′

∑
q

tαβ⊥ (q)eiq·(Rα−R′
β)e−ik·Rα+ik′·R′

β .

(1.116)
Write Rα, R′

β in terms of R, R′, as shown in
Eqs. (1.108) and (1.109). Carry out the summation over
R, R′ using the orthogonality relations,∑

R

e−i(k−q)·R = N
∑
G

δk−q,G, (1.117)∑
R′

ei(k
′−q)·R′

= N
∑
G

δk′−q,G′ , (1.118)

in which G, G′ are reciprocal lattice vectors for layer-1
and -2 respectively. This leads to

Tαβ
kk′ =

∑
G,G′

tαβ⊥ (k−G)e−iG·δαe+iG′·(δ′
β+d)δk−G,k′−G′ .

(1.119)
The delta function gives the rule for momentum conser-
vation,

k′ −G′ = k−G. (1.120)

For example, if k is located at the K-valley, then it could
couple with k′ at the K′-valley (call it Q0) and the other
two valleys Q1, Q2 via G′

1−G1 and G2−G′
2 (Fig. 12(a)),

where

G1 =
2π

a

(
+

1√
3
x̂+

1

3
ŷ

)
, (1.121)

G2 =
2π

a

(
− 1√

3
x̂+

1

3
ŷ

)
, (1.122)

and G3 = −2π

a

2

3
ŷ. (1.123)

As a result,

Ĥ12 =
∑
k,k′

∑
α,β

[
tαβ⊥ (Q0)δk,k′

+ tαβ⊥ (Q1)e
−iG1·δαe+iG′

1·(δ
′
β+d)δk−G1,k′−G′

1

+ tαβ⊥ (Q2)e
+iG2·δαe−iG′

2·(δ
′
β+d)δk+G2,k′+G′

2

]
× c†αkcβk′ + h.c. (1.124)

According to Eq. (1.115), the square bracket [ ] = Tαβ
kk′ ,

which has the form

Tαβ
kk′ = Tαβ(Q0)δk,k′ + Tαβ(Q1)δk−G1,k′−G′

1

+ Tαβ(Q2)δk+G2,k′+G′
2
, (1.125)

in which Tαβ(Qℓ) are the factors multiplying the delta
functions. When being written in matrices, we have

Tkk′ = T(Q0)δk,k′ + T(Q1)δk−G1,k′−G′
1

+ T(Q2)δk+G2,k′+G′
2
. (1.126)

For the exponents in Eq. (1.124), we have G′ · δ′β =
G · δβ , and

G · δα −G′ · δ′β = G · (δα − δβ). (1.127)

Depending on whether the stacking is AA, AB, or BA,
the difference δα−δβ can be 0,−δ, or +δ. We can choose
the displacement δ = −aŷ (see Eq. (1.9)), such that

eiGi·(δα−δβ) AA AB BA

G1 1 e−
2π
3 i e+

2π
3 i

G2 1 e−
2π
3 i e+

2π
3 i

(1.128)

It follows that, if we write

t ≡ tAB
⊥ (Qℓ), γ ≡ tAA

⊥
tAB
⊥

, (1.129)

then

T(Q0) = t

(
γ 1

1 γ

)
, (1.130)

T(Q1) = t

(
γ ei2π/3

e−i2π/3 γ

)
e+iG′

1·d, (1.131)

T(Q2) = t

(
γ e−i2π/3

ei2π/3 γ

)
e−iG′

2·d. (1.132)

When θ = 0, Bernard (AB) stacking is preferred. Thus
AB stacking has a larger tunnelling amplitude compared
to AA stacking, and γ is estimated to be 0.7 ∼ 0.8.

Finally, the low-energy Hamiltonian near a Dirac point
is,

Ĥ = Ĥ1 + Ĥ2 + Ĥ12 (1.133)

=
∑
k

ψ†
1kℏvFσ

− θ
2 · (k−K)ψ1k

+
∑
k′

ψ†
2k′ℏvFσ+ θ

2 · (k′ −K′)ψ2k′

+
∑
k,k′

(
ψ†
1k, ψ

†
2k′

)( 0 Tkk′

T†
k′k 0

)(
ψ1k

ψ2k′

)
,

in which

σ± θ
2 ≡ U†

(
±θ
2

)
σU

(
±θ
2

)
, U(ϕ) = e−iϕ

2 σz (1.134)

and (ψ1k, ψ2k′)T = (c1Ak, c1Bk, c2Ak′ , c2Bk′)T .
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decoupling at 
small angle
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K
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ଵ

FIG. 12 (a) The valleys Q0, Q1, Q2 could couple with each
other with the conservation of momentum k = k′ +G′

i −Gi.
(b) Some vectors in the mini-BZ.

The Schrod̈inger equation in momentum space would
be (

ℏvFσ− θ
2 · (k−K) Tkk′

T†
k′k ℏvFσ+ θ

2 · (k′ −K′)

)(
ψ1(k)

ψ2(k
′)

)

= ε

(
ψ1(k)

ψ2(k
′)

)
, (1.135)

in which the column vectors are state functions, instead
of annihilation operators.

Exercise
1. The effective two-band Hamiltonian for graphene
with gapped Dirac points is

H0 = ℏvF (±kxσx + kyσy) + ∆σz, near ±K, (1.136)

where vF is the Fermi velocity, σ is the quasi-spin for
orbital degrees of freedom (i.e., conduction and valence
bands), and ±K are the indices for two Dirac valleys.
(a) Using Eq. (1.49), show that the Berry curvatures
F±K
zτ are given by Eq. (1.51).

(b) What would the Berry curvatures become if the Dirac
points are gapless (i.e. ∆ = 0)?

2. Starting from Eq. (1.49), show that the Berry curva-
ture of graphene is given as Eq. (1.50).

3. (a) Given the Hamiltonian in Eq. 1.98 and the eigen-

states in Eq. 1.99, show that the Berry connections are,

A±
x (k) =

τ

2

(
1− ∆′

√

)
(±ky)
k2

, (1.137)

A±
y (k) =

τ

2

(
1− ∆′

√

)
(∓kx)
k2

. (1.138)

(b) Verify that the eigenstates can also be

u+ = N ′

(
∆′ +

√

α(τkx + iky)

)
, u− = N ′

(
∆′ −√

α(τkx + iky)

)
,

where N ′ ≡ [2
√

(
√ −∆′)]−1/2. Show that the Berry

connections are

A±
x (k) =

τ

2

(
1∓ ∆′

√

)
(+ky)

k2
, (1.139)

A±
y (k) =

τ

2

(
1∓ ∆′

√

)
(−kx)
k2

, (1.140)

which are different from the result in (a). Why this an-
swer makes no sense in physics?
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