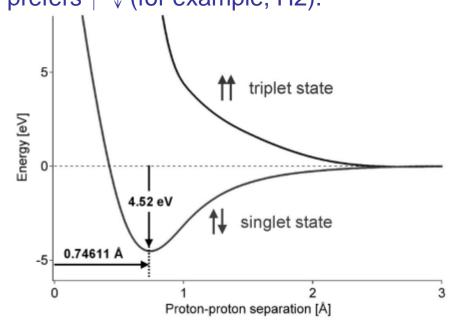

Ferromagnetism and antiferromagnetism

- ferromagnetism (FM)
 - exchange interaction, Heisenberg model
 - spin wave, magnon
- antiferromagnetism (AFM)
- ferromagnetic domains
- nanomagnetic particles

15 elements are magnetically ordered in the solid state


Nature, April 2011

Ferromagnetic insulator (no itinerant electron)

- FM is not from magnetic dipole-dipole interaction, nor the SO interaction. It is a result of electrostatic interaction!
- Estimate of order:

Dipole-dipole
$$U = \frac{1}{r^3} \left[\vec{m}_1 \cdot \vec{m}_2 - 3(\vec{m}_1 \cdot \hat{r}) \cdot (\vec{m}_2 \cdot \hat{r}) \right]$$
$$\cong \frac{\left(g\mu_B\right)^2}{r^3} \cong 10^{-4} \text{ eV} (\sim 1 \text{ K}) \text{ for } r \cong 2\text{ A}$$

• Because of the electrostatic interaction, some prefers $\uparrow \uparrow$, some prefers $\uparrow \downarrow$ (for example, H2).

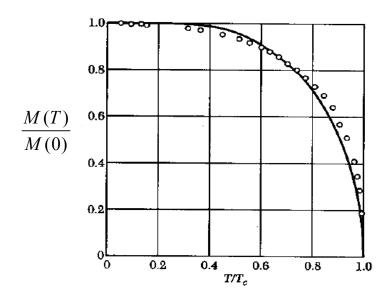
- Effective interaction between a pair of spinful ions
- $\vec{S}_1 \cdot \vec{S}_2 = \begin{cases} -3/4 & \text{for singlet} \\ 1/4 & \text{for triplet} \end{cases}$
- : Heisenberg wrote

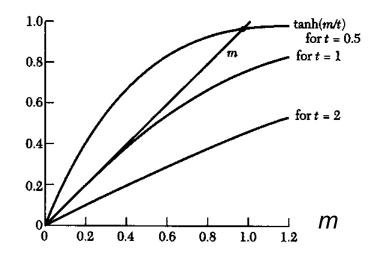
$$U = -(E_s - E_t)\vec{S_1} \cdot \vec{S_2} + \frac{1}{4}(E_s + 3E_t) \rightarrow \begin{cases} E_s \\ E_t \end{cases}$$
$$= -J\vec{S_1} \cdot \vec{S_2} + \text{constant (Heisenberg model)}$$

- J is called the exchange coupling const. (for 2-e system, the GND state must be a singlet)
- FM has J>0, AFM has J<0

• The tendency for an ion to align the spins of nearby ions is called an exchange field H_E (or molecular field, usually much stronger than applied field.)

• Weiss mean field $H_E = \lambda M$ for FM


$$\vec{M} = \chi_p (\vec{H} + \vec{H}_E)$$
, where $\chi_p = C/T$ is PM susceptibility $\chi_p = n (g_J \mu_B)^2 \frac{J(J+1)}{3kT} \equiv \frac{C}{T}$
 $\Rightarrow \chi = \frac{M}{H} = \frac{C}{T - C\lambda} \equiv \frac{C}{T - T_C}$ (Curie-Weiss law, for $T > T_c$ only)


 $\lambda = \frac{T_c}{C} = \frac{3k_B T_c}{ng^2 \mu_B^2 S(S+1)}$ For iron, $T_c \sim 1000$ K, $g \sim 2$, $S \sim 1$ $\therefore \lambda \sim 5000$ (no unit in cgs) $M_s \sim 1700$ G, $H_F \sim 10^3$ T.

Temperature dependence of magnetization

$$M = \frac{N}{V} g_J \mu_B J B_J \left(\frac{g_J \mu_B J H}{kT} \right)$$

where $B_J(x) \equiv \frac{2J+1}{2J} \operatorname{coth} \left(\frac{2J+1}{2J} x \right) - \frac{1}{2J} \operatorname{coth} \left(\frac{x}{2J} \right)$
= tanh x (for $J = 1/2$)

 $H \approx \lambda M \quad (H_{ext} \text{ neglected})$ $\therefore \quad M = n\mu \tanh \frac{\mu \lambda M}{kT} \quad (\mu \equiv g_J \mu_B J)$ or $m \equiv \frac{M}{n\mu} = \tanh \frac{m}{t} \qquad \left(t \equiv \frac{kT}{n\mu^2 \lambda}\right)$

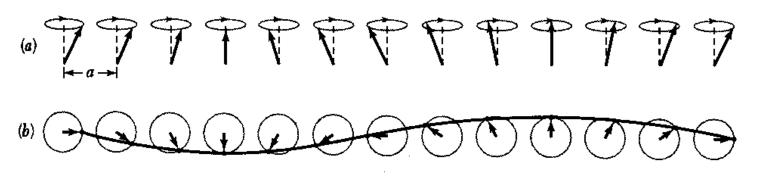
At low T, use $\tanh x \approx 1 - 2e^{-2x}$ $\rightarrow \Delta M \equiv M(0) - M(T)$ $\approx 2n\mu e^{-2\lambda n\mu^2/kT}$

Does not agree with experiment, which is \sim T^{3/2}. Explained later using spin wave excitation.

Spin wave in 1-dim FM (classical approach)

Heisenberg model
$$H = -2J\sum_{p=1}^{N} \vec{S}_{p} \cdot \vec{S}_{p+1} \quad (J > 0)$$

- Ground state energy $E_0 = -2NJS^2$
- Excited state:


Flip 1 spin costs $8JS^2$. But there is a cheaper way to create excited state.

$$H = -J\sum_{p=1}^{N} \vec{S}_{p} \cdot \left(\vec{S}_{p-1} + \vec{S}_{p+1}\right) = -\sum_{p=1}^{N} \vec{\mu}_{p} \cdot \vec{B}_{p}$$

where $\vec{\mu}_{p} = -g\mu_{B}\vec{S}_{p}$ $\left(\mu_{B} = e\hbar/2mc\right)$
 $\vec{B}_{p} \equiv -\frac{J}{g\mu_{B}}\left(\vec{S}_{p-1} + \vec{S}_{p+1}\right)$

 $\hbar S$ is the classical angular momentum

effective B field (exchange field)

torque $\hbar \frac{d\vec{S}_p}{dt} = \vec{\mu}_p \times \vec{B}_p = J\left(\vec{S}_p \times \vec{S}_{p-1} + \vec{S}_p \times \vec{S}_{p+1}\right)$

Dispersion of spin wave

assume
$$S_p^z \approx S; S_p^x, S_p^y \ll S_p^z,$$

neglect nonlinear terms in S_p^x, S_p^y

$$\Rightarrow \begin{cases} \hbar \frac{dS_p^x}{dt} = JS(2S_p^y - S_{p-1}^y - S_{p+1}^y) \\ \hbar \frac{dS_p^y}{dt} = -JS(2S_p^x - S_{p-1}^x - S_{p+1}^x) \end{cases}$$
let $S_p^x = ue^{i(pka-\omega t)}; S_p^y = ve^{i(pka-\omega t)},$
then $\begin{pmatrix} i\hbar\omega & 2JS(1-\cos ka) \\ -2JS(1-\cos ka) & i\hbar\omega \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$

$$\Rightarrow \hbar \omega = 2JS(1-\cos ka) \propto k^2 \text{ at long wave length}$$

磁振子

- Quantized spin wave is called magnon (∈ boson)
- magnon energy $\varepsilon_k = (n_k + 1/2)\hbar\omega_k$

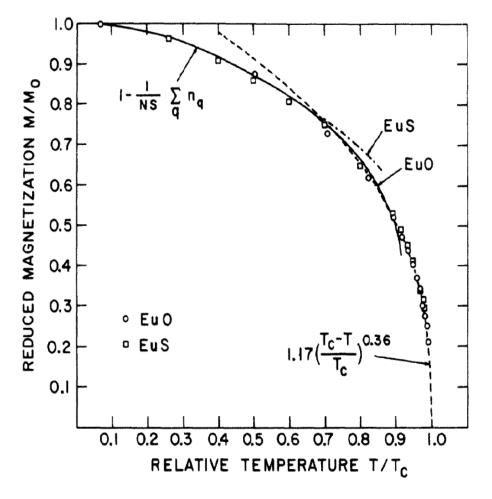
• magnons, like phonons, can interact with each other if nonlinear spin interaction is included.

Thermal excitations of magnons

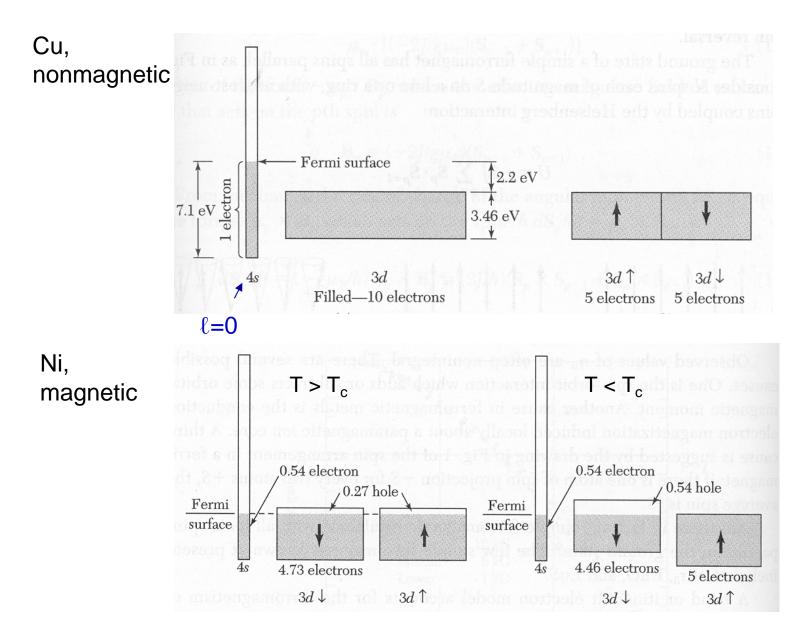
$$M(T) = \frac{g\mu_B}{V} \left(NS - \sum_k \langle n_k \rangle(T) \right)$$

(one magnon reduces spin by 1)

Number of magnons being excited,


$$\sum_{k} \langle n_{k} \rangle = \int d\omega D(\omega) \langle n_{k} \rangle$$
$$\langle n_{k} \rangle = \frac{1}{e^{\hbar \omega_{k}/kT} - 1} \quad \text{(boson)}$$

DOS in 3-dimension,


NS

M(0)

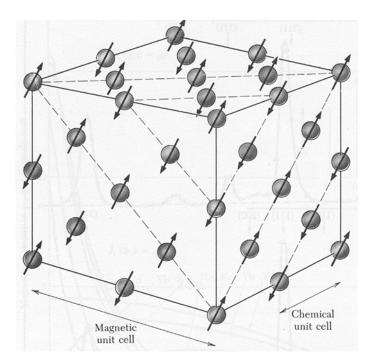
$$D(\omega) = \frac{V}{4\pi^2} \left(\frac{\hbar}{JSa^2}\right)^{3/2} \omega^{1/2}$$

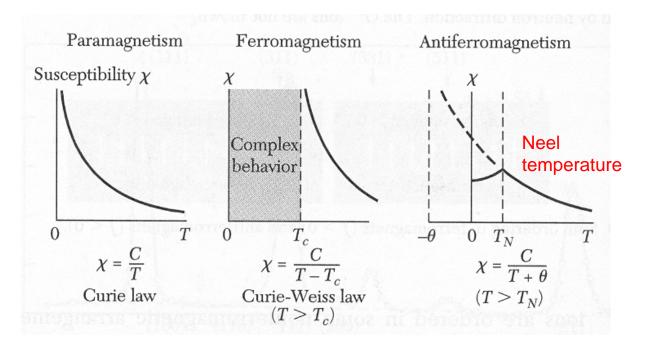
$$\therefore \sum_k \langle n_k \rangle = \frac{V}{4\pi^2} \left(\frac{kT}{JSa^2}\right)^{3/2} \int_0^\infty dx \frac{x^{1/2}}{e^x - 1}$$

$$0.0587(4\pi^2)$$

$$\frac{\Delta M}{dx} = \frac{\sum_k \langle n_k \rangle}{e^x - 1} \propto T^{3/2} \text{ (Bloch } T^{3/2} \text{ law)}$$

FM in Fe, Co, Ni (with itinerant electrons)


- ferromagnetism (FM)
- antiferromagnetism (AFM)
 - susceptibilities
 - ferrimagnetism
- ferromagnetic domains
- nanomagnetic particles


Antiferromagnetism (predicted by Neel, 1936)

• many AFM are transition metal oxides.

• net magnetization is zero, not easy to show that it's a AFM. First confirmed by Shull at 1949 using neutron scattering.

> MnO, transition temperature=610 K

T-dependence of susceptibility for $T > T_N$

Consider a AFM consists of 2 FM sublattices A, B.

 $\vec{H}_{A} = -\lambda \vec{M}_{B}; \quad \vec{H}_{B} = -\lambda \vec{M}_{A}$

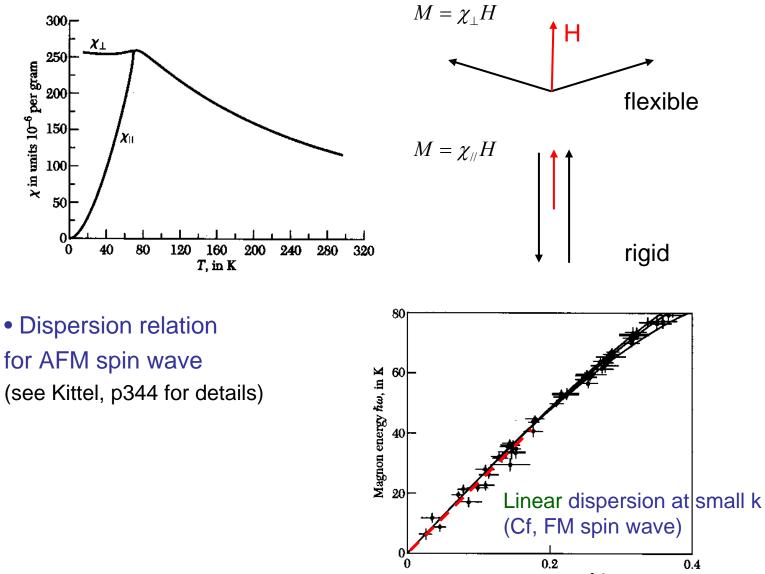
Use separate Curie consts C_A, C_B for sublattices A, B

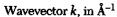
$$\begin{cases} M_{A} = \frac{C_{A}}{T} (H - \lambda M_{B}) \\ M_{B} = \frac{C_{B}}{T} (H - \lambda M_{A}) \\ \rightarrow \begin{pmatrix} T & \lambda C_{A} \\ \lambda C_{B} & T \end{pmatrix} \begin{pmatrix} M_{A} \\ M_{B} \end{pmatrix} = \begin{pmatrix} C_{A} \\ C_{B} \end{pmatrix} H \end{cases}$$

There is non-zero solution at H = 0only if det = 0

 $\Rightarrow T_N = \lambda (C_A C_B)^{1/2}$

At
$$T > T_N$$
,


$$\chi = \frac{M_A + M_B}{H}$$
$$= \frac{(C_A + C_B)T - 2\lambda(C_A C_B)}{T^2 - T_N^2}$$

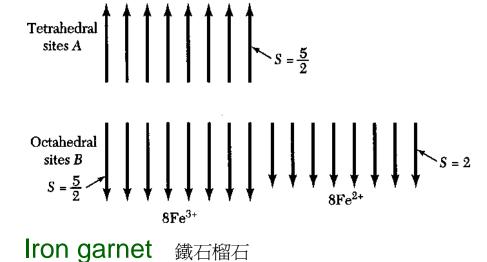

• For identical sublattices,

$$\chi = \frac{2CT - 2\lambda C^2}{T^2 - (\lambda C)^2} = \frac{2C}{T + T_N}, \quad T_N = \lambda C$$

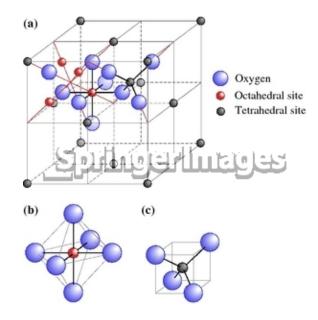
Experiment: $\chi = \frac{2C}{T + \theta}$

Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	Curie-Weiss θ , in K	$rac{ heta}{T_N}$	$rac{\chi(0)}{\chi(T_N)}$
MnO	fcc	116	610	5.3	23
MnS	fcc	160	528	3.3	0.82
MnTe	hex. layer	307	690	2.25	
MnF_2	bc tetr.	67	82	1.24	0.76
FeF_2	bc tetr.	79	117	1.48	0.72
$FeCl_2$	hex. layer	24	48	2.0	< 0.2
FeO	fcc	198	570	2.9	0.8
$CoCl_2$	hex. layer	25	38.1	1.53	
CoO	fcc	291	330	1.14	
$NiCl_2$	hex. layer	50	68.2	1.37	
NiO	fcc	525	~2000	~4	
Cr	bee	308			

• Susceptibility for $T < T_N$ (Kittel, p343)


Ferrimagnetic materials

磁鐵礦 Magnetite (Fe_3O_4 or $FeO \cdot Fe_2O_3$) Hematite 赤鐵礦

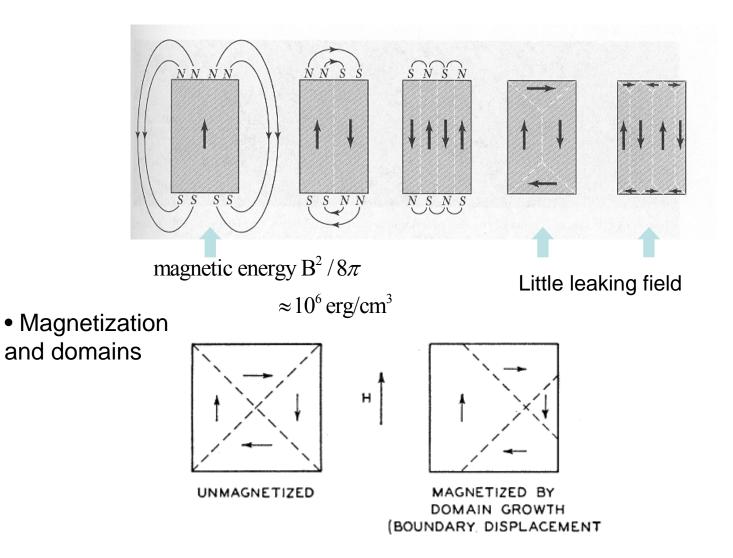

• Curie temperature 585 C

 $8Fe^{3+}$

belong to a more general class of ferrite MO · Fe₂O₃
 (M=Fe, Co, Ni, Cu, Mg...) 磁性氧化物

e.g., • Yttrium iron garnet (YIG) Y₃Fe₂(FeO₄)₃, or Y₃Fe₅O₁₂ 纪鐵石榴石 is a ferrimagnetic material with Curie temperature 550 K.

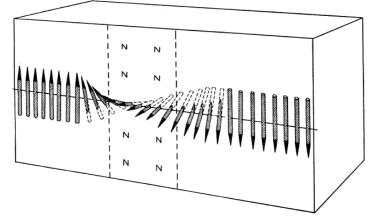
• YIG has high degree of Faraday effect, high Q factor in microwave frequencies, low absorption of infrared wavelengths up to 600 nm ... etc (wiki)



- ferromagnetism (FM)
- antiferromagnetism (AFM)
- ferromagnetic domains
- nanomagnetic particles

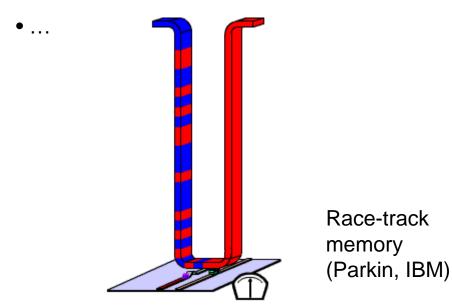
Magnetic domains (proposed by Weiss 1906)

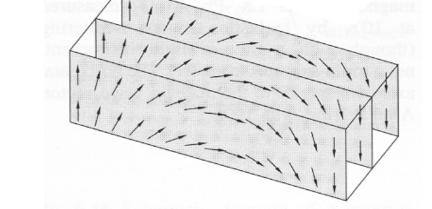
Why not all spins be parallel to reduce the exchange energy?

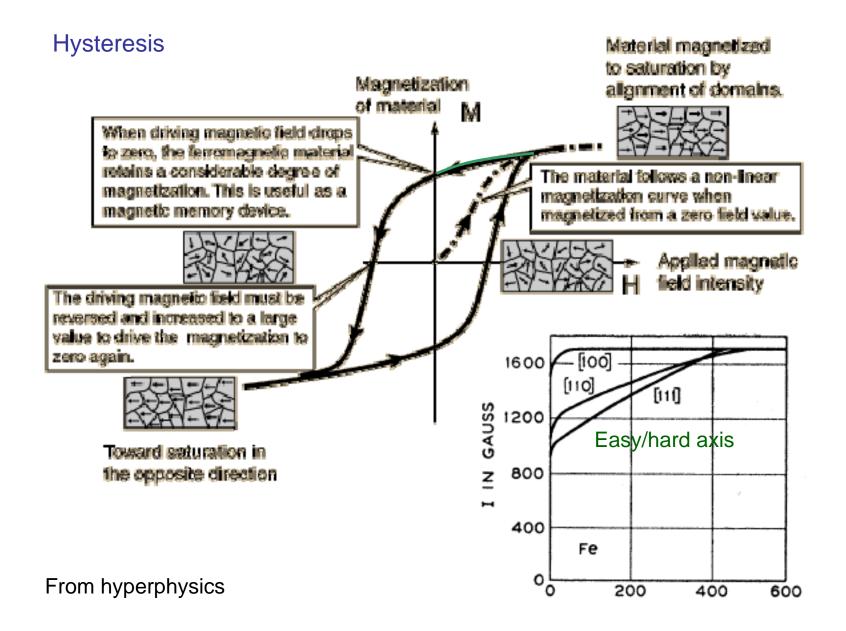

 \rightarrow it would cost "stray field" energy

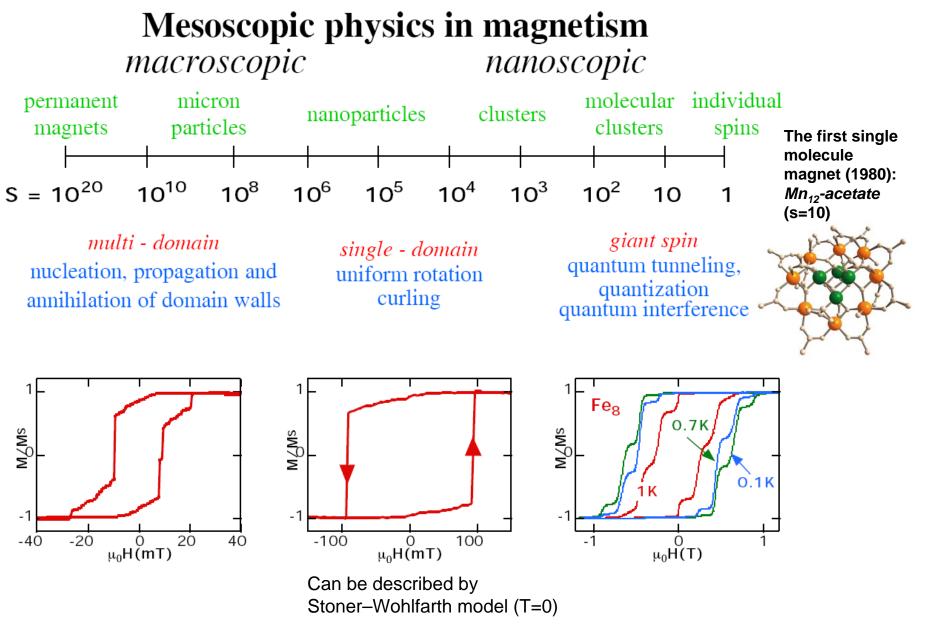
Transition between domain walls Why not just

→ Would cost too much exchange energy (not so in ferroelectric materials)

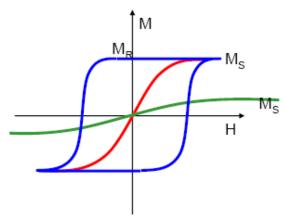

• Bloch wall




• Neel wall

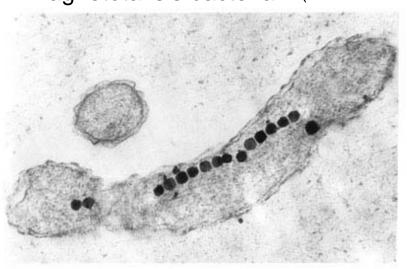

Domain wall dynamics

• domain wall motion induced by current

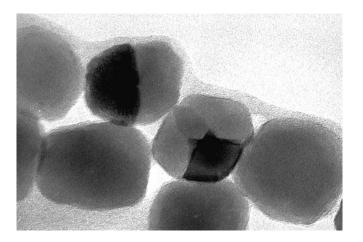


From W. Wernsdorfer's pdf

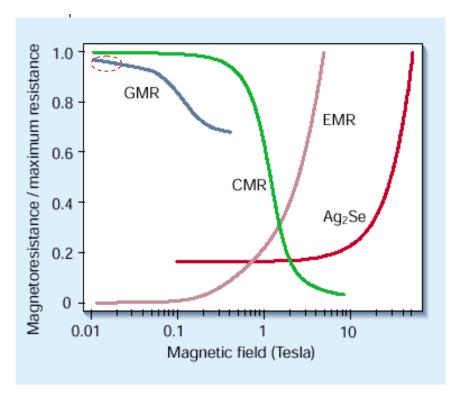
磁流體


Single domain particle: ferrofluid, magnetic data storage ...

- superparamagnetism 超順磁性
- $(T \neq 0, small enough single domain particle)$



趨磁性 ● Magnetotaxsis bacteria (Phototaxis - 趨光性)


Magnetospirillum magnetotacticum

http://www.calpoly.edu/~rfrankel/mtbphoto.html

The zoo of magnetoresistance (first discovered by Lord Kelvin, 1857)

- GMR (giant MR, Fert and Grünberg 1988) 正磁阻
- EMR (extraordinary MR, Solin, 2000)
- TMR (tunneling MR, Julliere, 1975)
- . . .

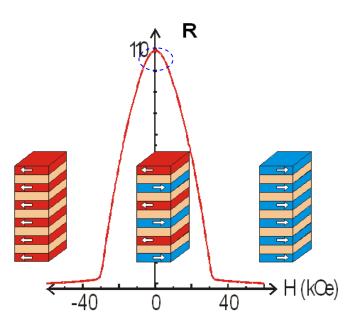
Getzlaff and Mathias - Fundamentals of Magnetism, p.259

Soh and Aeppli, Nature (2002)

Figure 1 Performance of magnetic-field sensors. The dependence of magnetoresistance on applied magnetic field is shown for typical devices based on giant magnetoresistance (GMR) at a temperature of 295 K, colossal magnetoresistance (CMR) at 220 K and extraordinary magnetoresistance (EMR) at 300 K. Husmann et al.8 have devised a new sensor based on the silver chalcogenide Ag₂Se, which can be used to measure magnetic-field strengths as high as 50 Tesla. The data shown here were measured at a temperature of 290 K, but the device performs just as well over a wide temperature range, even down to just a few degrees above absolute zero. (Data derived from refs 3, 6, 8 and A. Biswas, personal communication.)

異常磁阻

穿隧磁阻


Giant MR (of multi-layer magnetic materials)

(Gruenberg JAP; Fert PRL, 1988)

A. Fert and P. Grünberg

- In 1988, GMR was discovered
- In 1996, GMR reading heads were commercialized
- Since 2000: Virtually all writing heads are GMR heads

TYPE OF MR EFFECT USED	MR AT 300 KELVINS (percent)	DATA DENSITY (Gb/in ²)	SIGNAL-TO- NOISE RATIO (decibels) (larger is better)	TIME CONSTANT (nanoseconds) (smaller is faster)	MAGNETIC FIELD NEEDED (teslas) (smaller is better)
Target	4–10	100-1,000	30–40	0.01-0.1	0.005-0.05
EMR	> 35	> 300	43	< 0.001	0.05
GMR	10	125	29	0.1	0.005
TMR	15	200 estimated	34	0.1	0.001
CMR	0.4	100 estimated	-17	1.0	0.05
BMR	3,000	> 1,000	10	0.1	0.03

supplementary

supplementary

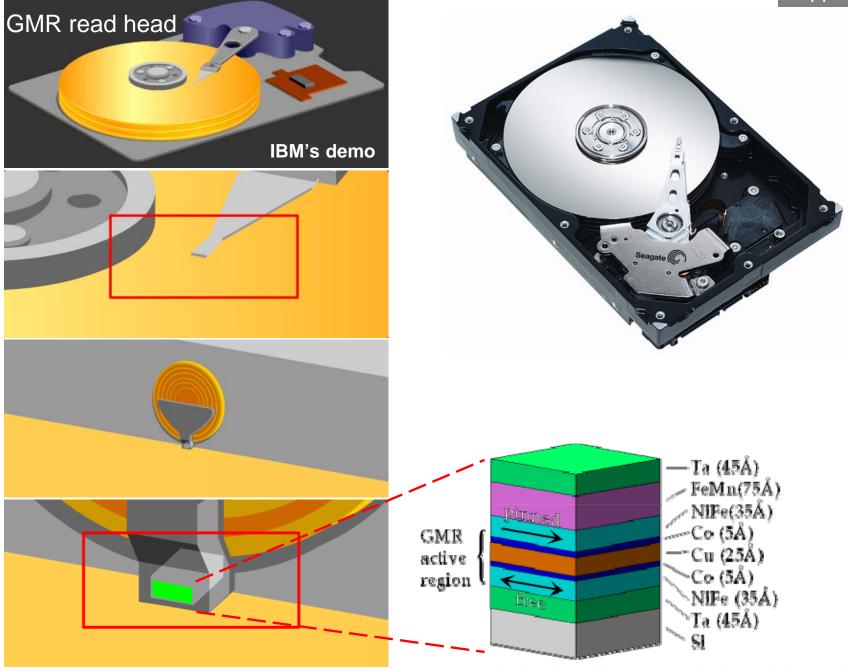


Fig from http://www.stoner.leeds.ac.uk/research/