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A brief history of low temperature (Ref: fei%f 5% o )
» 1800 Charles and Gay-Lusac (from P-T relationship) proposed
that the lowest temperature is -273 C (= 0 K)

» 1877 Calilletet and Pictet liquified Oxygen (-183 C or 90 K)

» soon after, Nitrogen (77 K) is liquified

» 1898 Dewar liquified Hydrogen (20 K)

» 1908 Onnes liquified Helium (4.2 K)

* 1911 Onnes measured the resistance of metal at
such a low T. To remove residual resistance, he chose
mercury. Near 4 K, the resistance drops to 0.
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Tc's given are for bulk, except for Palladium, which has been irradiated with

He+ ions, Chromium as a thin film, and Platinum as a compacted powder
http://superconductors.org/Typel.htm



Superconductivity in alloys and oxides Applications of superconductor
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C/T in mJ mole~! deg =2

Thermal properties of SC: specific heat
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The exponential dependence with T is
called “activation” behavior and implies

the

existence of an energy gap above

Fermi surface.
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» Connection between
energy gap and T,

MEASURED VALUES* OF 2A(0)/ksT,

ELEMENT - 2A(0)/kgT,
Al | 34
Cd - ' 3.2
Hg(@) = 46 -
In’ . 3.6

~ Nb 38
Pb 43 -
Sn’ : 35

 Ta | - 36

) n.' o . 36
v | 3.4

‘:'_Zn R 32

% . A(O) is. taken from tunneling experiments.
‘Note that the BCS value for this ratio is 3.53.
‘Most of the values listed have an uncertamty
of +0.1.

A's scale with different T's
2A(0) ~ 3.5 kgT,

» Temperature dependence of A
(obtained from Tunneling)

Universal behavior of A (T)
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* Entropy

« free energy
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More evidences of energy gap

* Electron tunneling
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HJT) in gauss

Magnetic property of the superconductor

» Superconductivity is destroyed by a strong magnetic field.
H. for metal is of the order of 0.1 Tesla or less.

» Temperature dependence of H(T) All curves can be collapsed onto
a similar curve after re-scaling.
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From Cywinski’'s lecture note

Critical currents (no applied field)

Radius,

current Magnetic field

~ drr . . Ca
: . =—H,

The critical current density of a long
thin wire is therefore

_CH,
274

jc~108A/cm? for H.=500 Oe, a=500 A

I (thinner wire has larger J.)

* J. has a similar temperature Cross-section through a
dependence as H., and T is similarly niobium—tin cable

lowered as J increases. Phys World, Apr 2011



Meissner effect (Meissner and Ochsenfeld, 1933)

A SC is more than a perfect conductor
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T=300K
Bext = D Bext
lul
cooling {
!
Bext =0 @ l cooling
(b)
Lenz

Bext @ T

(c)

Bext""o %

(d)
A
G

A

% ext
Y

YT

different

Superconductor

@ T=300K
Bext =0

(a)
cooling +

Bext =0 %

(b)

oo |

(c)

0| Bext—0 @

-

Bext
{e)
A :
l cooling
|
I
I
I
|
_ i - .
@ BE::-:t"U
(d) J
d (g) B
/)
~
same

not only dB/dt=0
but also B=0!

Perfect
diamagnetism



Superconducting alloy: type Il SC

partial exclusion and remains superconducting at high B (1935)

(also called intermediate/mixed/vortex/Shubnikov state)
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* Hc, is of the order of 10~100 Tesla (called hard, or type Il, superconductor)



Comparison between type | and type Il superconductors
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London theory of the Meissner effect (Fritz London and Heinz London, 1934)

Carrier density

T
Assume like free

d J ne 2 charges
(@) 5

dim =
(2) J,=0,E

London
where proposed
{s = —€N,V; —
J, =—-enyVv
. - Ar -
userB:TJs and -

Two-fluid model:
n, +n, =n=constant

« Superfluid density ng

» Normal fluid density n,

— 1 6B
Eq.()+VxE=———
q.(1) e

= = n.e’
E(VXJS): L]
dt mc ot

2
vxJ =X g

mc
- n.e’
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It can be shown that
\/ ¢ =0 for simply
connected sample
(See Schrieffer)



 Penetration length A |

Vacuum

\ tin
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 Predicted A (0)=340
measured 510 A

Outside the SC, B=B(x) z

2
B
298
dx
— B(x)=B,e ™" (expulsion of
magnetic field)

B

2

= |- ~170A if n,=10%/cm®
4rnge
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VxB="27,
C
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Coherence length &, (Pippard, 1939)

* In fact, n, cannot remain uniform near a surface.

The length it takes for ng to drop from full value to
O is called &,

» Microscopically it's related to the range
of the Cooper pair.

 The pair wave function (with range &) is a
superposition of one-electron states with energies
within A of Eg (A+M, p.742).

Energy uncertainty pAp ~ A
of a Cooper pair m ~

o

(7]

surface

<—§O+

superconductor

»
»

 Therefore, the spatial range of the variation of ng

S r—= “ hifrom BCS theory

Ap A A

Eo~1 um>> A fortype | SC

X



Penetration depth, correlation length, and surface energy

Type | superconductivity
« &, > A, surface energy is positive

Number of

Magnetic superelectrons

flux density

(a) Penetratian depth and coherence range at boundary

Magnetic
Free N T contribution
P . ! a2
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o NN _ L.
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1 2
SN 7t H;
% = e, __*_ Electron-ordering
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(b) Contributions to free energy
Free
enaergy
density
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(¢) Total free energy

 smaller A, cost more energy to
expel the magnetic field.

* When &£,>> A (typel), thereis a
net positive surface energy. Difficult
to create an interface.

Type Il superconductivity
« £, <A, surface energy is negative
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A
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(b} Contributions to free energy
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* smaller £, get more “negative”
condensation energy.

* When &£,<< A (type ll), the surface
energy is negative. Interface may
spontaneously appear.

(c) Total free energy
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Vortex state of type Il superconductor (Abrikosov, 1957)

Normal
core . . .
Bos | |  the magnetic flux ¢ in a vortex is
| : :
| o R é always quantized (discussed later).
2t & | |
@ i 1Y, * the vortices repel each other slightly.
1 I)—I—__J 1V == —————
‘ 1P i ey . .
4 Qf; asizin S i » the vortices prefer to form a triangular
' 2 HEhel O b Ll dey . . .
‘%5/;'1‘;“{ il lattice (Abrikosov lattice).
i
/ﬁﬁ i | i~ -~ * the vortices can move and dissipate energy
‘ \ \1[ ligal (unless pinned by impurity <— Flux pinning)
; > H
0 :
He,! He,
© © ........
-M v o ©o 0 0 o
. . .. .. .. ..

From Cywinski’s lecture note



Estimation of Hc, and Hc, (type II)

Z T . « Near H_,, there begins with a single

@ vortex with flux quantum ¢, therefore
| 4
| ks ﬂleClz%_)Hclz;z/loz

* Near H_,, vortex are as closely packed

/;\A as the coherence length allows, therefore

~Y

N”é:ozch ~Ng, > H_, ~ i

0
Ho (2)
Therefore, —2 z[ j

2

S cl 50

=Y

Typical values, for Nb,Sn,

Eo~34A, L ~ 1600 A



Origin of superconductivity?

» Metal X can (cannot) superconduct because its atoms can
(cannot) superconduct?

Neither Au nor Bi is superconductor, but alloy Au,Bi is!

White tin can, grey tin cannot! (the only difference is lattice structure)

» good normal conductors (Cu, Ag, Au) are bad superconductor;
bad normal conductors are good superconductors, why?

* What leads to the superconducting gap?
» Failed attempts: polaron, CDW...

0.623

* |sotope effect (1950):

0.621 |-

log 1o I¢

It is found that T_ =const x M- e

a ~ 1/2 for different materials

<+——>

mercury
lattice vibration?

0.617 l |
2.295 2.300 2.305
log,q M

2.310



Brief history of the theories of superconductors

» 1935 London: superconductivity is a quantum phenomenon
on a macroscopic scale. There is a “rigid” (due to the energy
gap) superconducting wave function V.

« 1950 * Frohlich: electron-phonon interaction maybe crucial.
* Reynolds et al, Maxwell: isotope effect

» Ginzburg-Landau theory: p g can be varied in space.
Suggested the connection  p, (F) = w (F) |’

and wrote down the eq. for order parameter W (r) (App. |)

» 1956 Cooper pair: attractive interaction between electrons (with
the help of crystal vibrations) near the FS forms a bound state.

» 1957 Bardeen, Cooper, Schrieffer. BCS theory

Microscopic wave function for the
condensation of Cooper pairs.

Ref: 1972 Nobel lectures by Bardeen, Cooper, and Schrieffer



Dynamic electron-lattice interaction — Cooper pair

Lattice planes

ol

Effective attractive interaction
between 2 electrons
(sometimes called overscreening)

Deformation amplitude

‘ [
_—

e V4
VF&JD

Distance fromelectron ~ 1 um

'

(range of a Cooper pair;
coherence length)



Cooper pair, and BCS prediction

« 2 electrons with opposite momenta (p 1 ,-p v ) can form a bound
state with binding energy (the spin is opposite by Pauli principle)
1

A(0) = 2hw e PEMm | see App. H

A

2A(0) ~ 3.5 kg T,

4

4

A

« Fraction of electrons involved ~ kT /Eg ~ 104

» Average spacing between condensate electrons ~ 10 nm

» Therefore, within the volume occupied by the Cooper pair, there
are approximately (1 . m/10 nm)3 ~ 106 other pairs.

» These pairs (similar to bosons) are highly correlated
and form a macroscopic condensate state with (BCS result)
1

K,T. =113k e PEVm

hawy, <500 K, D(EL)V,, <1/3
T.<500e°=25K  (~upper limit of T)



Energy gap and Density of states

D(E)

n(e)/n(eg)

0.5 |-

0.0

~ 0O(1) meV

* Electrons within kT of the FS have their energy lowered
by the order of kKT during the condensation.

» On the average, energy difference (due to SC transition)

per electron is

F



Families of superconductors
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Flux quantization in a superconducting ring
(F. London 1948 with a factor of 2 error, Byers and Yang, also Brenig, 1961)

« Current density operator = Zi VI*ZVW —l//éV(//*}, q=—¢€
m | |

_ . a . =Y T=-2e
* SC, inthe presence of B j = q* W ZV—q—A W+ EV—q—A w* q*
2m [ C m =2m

let w=|w|e" and assume || vary slowly with T

Zones of
_ persistent
then i — V¢ 2e? i P - London eq. with current
= m me )" n, =2yl
* Inside a ring (js ]d_gf =0
r hc hc
= A-dl=——¢Vp-dl=——A
2e<ﬁ ? 2e ?
\
flux |®|= nE =Ng,, G=— he _ =2x107" gauss-cm® Path deep
2e 2e in material

* ¢, ~ the flux of the Earth's magnetic field
through a human red blood cell (~ 7 microns)



Single particle tunneling (Giaever, 1960) NS
3l T=33°%K
Current .
di/dv
Fermi i B
energy ‘ g L
e e Voltage
- Ayfe -
20'30 A th|Ck o 4l€ B|c |zle |sle
ENERGY (IN UNITS OF ¢)
o EMPTY
SIS STATES
] it
------ 24, R
— | j@fﬁljgﬂ VOLTAGE ) (e)
——FILLED =y
E STATES = 5
(A) (C)
THERMALLY DENSITY OF {GURRENT
EIGI'I}E#OHS - STATES
EC 3
s e For T>0
e ENERGY (8) (Tinkham, p.77)
(A)] TUAPPLIED VOLTAGENe) Ref. Giaever's 1973

ﬁz-A, ‘24, Nobel prize lecture



Josephson effect (Cooper pair tunneling) Josephson, 1962

1)

DC effect:

There is a DC current through SIS in the absence of voltage.

Superconductor |

¥

A

1

Oxide barrier

(ne/2)s

i81 -K(x+d/2)
e

2

I'S2 Kix—d/2)
=

|
|
|
|
|
|
' e
|
[
|
|
|

i
vy =ly,le”
089 128 B L ot
3
w =N /2(ei91—|<(x+d/2)_|_ei92+K(x—d/2))
—\'s
32
- iefing S Ke- ( ol (6- 02)_|_ei(92—01)) >
2m
.. Cat
= J,SIn o,

j, =ean,Ke ™ /m, 5,=6,-0,

v, =|y,le
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i0,
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Pb- Pb
FEE—a e 2

Josephson

: tunneling

dc Josephson
current

_Load line
/' switching

tunneling

OA

1 2
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2) AC Josephson effect

Apply a DC voltage, then there is a rf current oscillation.

Vv = <N —1‘()&‘ N> oC e_i(EN —En)th e—iyt/h
- GO)=-pt/n+6, (i=12)

Hy =, = =28V

L5 = 2eV t+5, = j=]j,sin 2eV t4+5 (see Kittel, p.290 for an
N h ° ° h 0 alternative derivation)

* An AC supercurrent of Cooper pairs with freq. v =2eV/h, a
weak microwave is generated.

e U can be measured very accurately, so tiny AV as small as
10-1° V can be detected.

* Also, since V can be measured with accuracy about 1 part in
1019, so 2e/h can be measured accurately.

» JJ-based voltage standard (1990):
1V = the voltage that produces » =483,597.9 GHz (exact)

» advantage: independent of material, lab, time (similar to the
quantum Hall standard).



3) DC+AC: Apply a DC+ rf voltage, then there is a DC current

V =V, +vcosawt

J = J,sin {%(Vot +Zsin ot +50}

Q
: 2ev ) . [ 2eV,
= ~1)"J, | — |sin 2t—nwt+4,
10;( ) n(h(()j h Oj
= there is DC currentat V, = nZ—w
e

* Another way of providing a voltage standard

I

l Shapiro steps (1963)
given |, measure V

|

] ] | | | | | ]
-600 -450 -300 150 150 300 450 600 @




SQUID (Superconducting QUantum Interference Device)

J=1],8Ino, + J,sin g,

=2j, 003(5a _5"js,in(5"1 +5bj
2 2

Vet wi Similar to (]SA-df_——que d7

Junction q,

phase phase
difference difference
3

o al

3, We now have Ejﬂ-d?m%l—ﬁ
hc

ﬁjli.d‘é:eaz—ebz

= 5,-6, _—<j>A di=2722

cos[—” ﬂj
2 4

INSULATOR NIOBIUM COIL The current of a SQUID

with area 1 cm? could
change from max to min

by atiny AH=107 gauss!

S =2 g

For junction with finite thickness

wnin JUNCTIONS MWVWWWWVW
WASHER JUNCTIONS
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[T (tesla)]

1G (10°) Neutron stars

1k (10%) Upper limit (7) of man-made fields
“Explosion” pulse fields (~500T) lasting < 0.000001 s

100 Pulse fields (80 T) lasting ~0.00001-0.001 s

Highest “DC" fields (40T); SCM (~25T) for NMR
10 SCM for thermonuclear reactors (~10T)

SCM for maglev, generators, motors (~5T)
1 SCM for MRI (~1T) SuperConducting Magnet

Upper limit by permanent magnets (~0.3T)
100m

10m (100 gauss) Toy magnets

Safe limits (~50 gauss) for floppy disks, pace-makers
1lm (10 gauss)

FDA limits (5 gauss) for “environmental” felds
1004 (1 gauss)

Earth field (~0.7 gauss)

104
1p (107°)
100n
10n Non-destructive testing
1n (10~%) NDT for microcracks
100p “Heart” field
10p MCG, magnetocardiography
1p (1071%)
“Brain” field (~500£T)
100f MEG, magnetoencephlography
10f

1f (10~'5) Lower limit of SQUID sensitivity



Super-sentitive photon detector Transition edge sensor
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