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Fermi surfaces and metals

• Higher BZ, Fermi surface

• Semiclassical electron dynamics (see Chap 8)

• de Haas-van Alphen effect

(the Sec on “Calculation of energy bands” will be skipped)



First, 

• A filled band does not carry current (Peierls, 1929)
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∴ unoccupied states behave as +e charge carriers

• The concept of hole
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• Beyond 1st Brillouin zone 
(for square lattice)

• Reduced zone scheme

Every Brillouin zone 
has the same area1 3

33

3 3

3 3
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• At zone boundary, k satisfies the Laue condition ˆ
2

G
k G 


Bragg reflection at zone boundaries produce energy gaps
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• The first BZ of fcc lattice (its reciprocal lattice is bcc lattice)

4π/a

• The first BZ of bcc lattice (its reciprocal lattice is fcc lattice)
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BCC crystal FCC crystal   
(e.g. Alkali metal) (e.g. noble metal)

Beyond the 1st

Brillouin zone
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Fermi surface for 2D empty square lattice

• For a monovalent element, 
the Fermi wave vector

2Fk a

• For a divalent element

• For a trivalent element

4Fk a

6Fk a

1st BZ 2nd BZ
• Distortion due to lattice potential

1 2 3

Chap 9 of A+M, Prob.1
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A larger Fermi sphere (empty lattice)

• Extended zone scheme • Reduced zone scheme

• Periodic zone scheme

Again if we turn on the 
lattice potential, then 
the corners become 
rounded.
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Fermi surface of alkali metal (monovalent, BCC)

kF = (32n)1/3

n = 2/a3

→ kF = (3/4)1/3(2/a)

ΓN=(2/a)[1/2]1/2

∴ kF = 0.877 ΓN

4π/a

Percent deviation of k from the 
free electron value < 1% (mostly)
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Fermi surface of noble metal (monovalent, FCC)

Band structure 

(empty lattice)kF = (32n)1/3,

n = 4/a3

→ kF = (3/2)1/3(2/a)

ΓL= ___

kF = ___ ΓL

Periodic zone scheme
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Fermi surface of Al (trivalent, FCC)

• Empty lattice approximation • Actual Fermi surface

1st BZ 2nd BZ

2nd BZ

3rd BZ

Ref: Fermi surface database
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www.phys.ufl.edu/fermisurface/
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• Higher BZ, Fermi surface

• Semiclassical electron dynamics

• de Haas-van Alphen effect

In what follows, CGS is used. 
To convert to SI, just set c=1.
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Classical picture
(Drude, Lorentz)
Particle (localized)

Electron scattering
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Semiclassical picture
• Wavepacket

(Superposition of Bloch states)

Quantum picture
(Sommerfeld, Bloch)
Bloch wave (extended)

Scale of wavepacket
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 41.16 10 /  eV
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• E(r,t) and B(r,t) can vary in space-time, as long as characteristic length

l>>a, and  

Equation of motion for a 
wave packet in band-n
with location r and wavevector k:

• E is the external field, not including the lattice field. 

The effect of lattice is hidden in εn(k)!
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Semiclassical electron dynamics (Chap 8)

Derivation 
neglected

• It is valid only when inter-band transition can be neglected. 

g 

“never close to being 
violated in a metal”

Range of validity 

important

That is, the electron moves in one band only. 

(One band approximation)
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Bloch electron in an uniform electric field (Kittel, p.197)
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• Energy dispersion (1D, periodic zone scheme)

• In a DC electric field, the electrons decelerate and reverse      

its motion at the BZ boundary. 

• A DC bias produces an AC current! (called Bloch oscillation)
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• Partially filled band without scattering

• Current density
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• Partially filled band with scattering time 
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• Why the oscillation is not observed?

The electron has to maintain phase coherence.

To complete a cycle (a is the lattice constant),
eET/ = 2/a → T=h/eEa

For E=104 V/cm, and a=1 A, T=10-10 s.

But electron collisions take only about 10-14 s.

∴ a Bloch electron cannot reach zone boundary without de-phasing.

• a stronger E field → but only up to about 106 V/cm (for semicond)

• a larger a → use superlattice (eg. a = 100 A)

• reduce collision time → use crystals with high quality

(Mendez et al, PRL, 1988)

• Bloch oscillators generate THz microwave: 

frequency ～ 1012~13, 

wave length λ～ 0.01 mm - 0.1mm

(Waschke et al, PRL, 1993)

To observe it, one needs
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Bloch electron in an uniform magnetic field
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Therefore, 1. Change of k is perpendicular to B,

k|| does not change

and 2. ε(k) is a constant of motion

important

• For a spherical FS, it just gives 
the cyclotron orbit.

• For a connected FS, there might 
be open orbit.

This determines uniquely an orbit on the FS (given I.C.):

B
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• r-orbit rotates by 90 degrees w.r.t the k-orbit and is scaled by λB
2

magnetic length: λB ≡ (c/eB)1/2   (~ 256 A at B = 1 T).

Cyclotron orbit in real space

The analysis above gives us the orbit in k-space. 

What about the orbit in r-space?
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• Higher BZ, Fermi surface

• Semiclassical electron dynamics

• de Haas-van Alphen effect
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De Haas-van Alphen effect (1930)

In a strong magnetic field, the 

magnetization of a crystal oscillates 

as the magnetic field increases.

Silver

Similar oscillations are observed in 

other physical quantities, such as Resistance 
in Ga

These are all due to the quantization of electron energy levels 
in a magnetic field (Landau levels, 1930)

• magnetoresistivity
(Shubnikov-de Haas effect, 1930)
• specific heat
• sound attenuation
… etc
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In the discussion earlier, the radius of a cyclotron orbit can be varied 

continuously, but the orbit should be quantized due to quantum effect.

• Bohr-Sommerfeld quantization rule (Onsager, 1952)

for a closed cyclotron orbit,

whe
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• The flux through an r-orbit is quantized in units of Φ0.

Why (q/c)A is momentum 
of field? See Kittel App. G.

Quantization of cyclotron orbits

also
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flux quantum Φ0 ≡ hc/e  (~ 4.14·10-7 gauss．cm2)



• Since a k-orbit (circling an area S) is closely related to 

a r-orbit (circling an area A), the orbits in k-space are 

also quantized (Onsager, 1952)
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• Energy of orbits in 2D (for spherical FS)

important
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Landau levels (due to cyclotron orbits)
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In 3D, the kz direction is not quantized
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Degeneracy of Landau level
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Highly degenerate
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In the presence of B, the Fermi sphere 

becomes a stack of cylinders.

Hunklinger, Festkörperphysik

• Fermi energy ～ 1 eV

cyclotron energy ～ 0.1 meV (for B = 1 T) 

∴ the number of cylinders ～ 10000

• need low T and high B to observe the 

quantization.



E
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Radius of cylinders , so they expand as we increase B.

The orbits are pushed out of the FS one by one.

larger level separation, 
and larger degeneracy  
(both     B)

FS

B



• Successive B’s that produce orbits with the same area:

Sn = (n+1/2) 2e/c B

Sn-1'= (n-1/2) 2e/c B'  (B' > B)

1 1 2
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equal increment of 
1/B reproduces 
similar orbits

Cyclotron orbits

Landau levels
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Oscillation of DOS at Fermi energy

• Number of states in dε are 

proportional to area of cylinder 

in an energy shell.

Two 
extremal 
orbits

• Number of states at EF is highly enhanced when 

there is extremal orbit on FS.

• There are extremal orbits (and enhanced DOS)   

at regular interval of 1/B.

• This oscillation of DOS (in 1/B) can be detected 

in any physical quantity that depends on DOS .
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Determination of FS
In the dHvA experiment of silver, the two 
different periods of oscillation are due to 
two different extremal orbits.

1 1 2
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Therefore, from the two periods we can 
determine the ratio between the sizes of 
"neck" and "belly“.

A111(belly)/A111(neck)=27

A111(belly)/A111(neck)=51

A111(belly)/A111(neck)=29

B
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Determination of FS

• dHvA

• ARPES (Angle-resolved photoemission spectroscopy)

• ACAR (Angular Correlation of Electron-Positron Annihilation Radiation)

• …

Fermi surface and electron 
momentum density of Copper (wiki)

F.Baumberger’s webpage

ARPES ACAR
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