Dept of Phys

Conjugated polymers i U
LN
insulators semi- metals X
conductors
L} L] ] v
S/m I 10 ' 10" | 10 | 10 l 10 | 10° I,
107 10 10 10 10° 10 10 M.C. Chang
Conductivity | | | | | sl
o o “? o & &
S S WP N & K
& & S B y & o %\c}
o ;

Energy bands

* Nearly-free electron model
* Bloch theorem

* The central equation

« Empty-lattice approximation

* Tight-binding model (see Chap 9)

NFE model i1s good for Na, K, Al... etc,
in which the lattice potential is only a
small perturbation to the electron sea.



History of band theory
(Ref: chap 4 of &g i EE, by ZHHH)

* 1928 — Bloch theory (Ph.D. dissertation under Heisenberg)
« 1929/30 — Peierls
» nearly-free electron model, diffraction and energy gap

electron effective mass

a filled band does not conduct

hole

umklapp process for phonons

* 1930 — Kroenig-Penny model

* 1931 — Wilson explains metal/semiconductor/insulator



o0
Energy gap

Nearly-free electron model
Free electron plane wave

P 27
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. (r)y=e"", kx:nxT
» Consider 1-dim case, when we turn on a lattice potential with period a,
the electron wave will be Bragg reflected when k=+11/a, which forms two

different types of standing wave (Peierls, 1930).
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» These 2 standing waves have different electrostatic energies.
This is the origin of the energy gap.

If potential V(x)=Vcos(21x/a), then Note: Kittel use

r potential energy U (=eV)
E, =jdx(p_ —p. )V (x)
0

dx(—e)(|w_(0) " =y, (x) [ )V (x)
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» Lattice effect on free electron’s energy dispersion %
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allowed
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Electron’s group velocity is zero near the boundary of the 1st BZ
(because of the standing wave).

Q: where are the energy gaps when V(x)=V, cos(2mx/a)+V, cos(41x/a)?
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A solvable model in 1-dim: The Kroenig-Penny model (1930)
(not a bad model for superlattice)

Yo = 111111

 Electron energy dispersion calculated from the Schrodinger eq.

(read Kittel if you're interested in this calculation)
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Bloch wave function: 1/ - (r) = e’ﬁ'au/}» ()

Bloch recalled,

The main problem was to explain how the electrons could sneak by
all the ions in a metal so as to avoid a mean free path of the order of
atomic distances. ... the observed resistances [demands] that the
mean free path become longer and longer with decreasing

temperature.

By straight Fourier analysis | found to my delight that the wave differed
from the plane wave of free electrons only by a periodic modulation.
This was so simple that | didn't think it could be much of a discovery,

but when | showed it to Heisenberg he said right away: "That's it!"

Hoddeson L — Out of the Crystal Maze, p.107
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Bloch theorem (1928)

The electron states in a periodic potential is of the form

v (7F)=e""u.(F), where u, (r+R)= u,(r) is a cell-periodic function.

* A simple proof for 1-dim (this is basically Bloch’s original proof):
|¥(x)|? is the same in each unit cell. == Y(x+a)=C¥(x), Cis a phase
Consider periodic BC,
w(x+Na)=C"y(x) =y (x)
- C:exp(zzi%j, 5=0,1,2--,(N -1)
>  y(x+a)=Cy(x)

=™y (x), kE27zi
p(x) v

write w, (x) = ™ u, (x)

then u, (x+a)=u,(x)

Similar proof applies to higher dimension.
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» Schrodinger eq for y,: Lattice
potential

E =
eirg];eerr?s){tate W (?) = elk'ru]; (f)

u,(r) depends on the form of the periodic lattice potential.

All of the info is

 Schrodinger eq for u,: in one unit cell.

H (lg Ju. = &-u. within one unit cell
where H (l;) = ¢ 7 [T «— Effective Hamiltonian for u,(r)

—h—2(1+/€j +U(F)

_2m ]
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Allowed values of k are determined by the B.C.

Periodic B.C. yw.(F+Na)=vy.(¥), i=1,23
(3-dim case)

— "N =1, Vi

~ N
—>k-Na =2rm,m €Z,Vi ’
(seechap 2) | - m. — m. — m. —
— lk=—b+—2b,+—b, N N,
N, N, N, 1
NE=b o b =i1§1-(152><133) N=N,N,N,
N \N, N,) N
Z; Z; 3 * 671'(672><673)=v:%,
(b, x
- 1 (i_» 3):N ) ) ) (272:)3
ANk e b -(b,xb,)= :
v
Vol of 18t BZ .
vg| gfa k-point . A3k:(2”) , as in the free-electron case.

Therefore, there are N k-points in a BZ, where
N = total number of unit cells in the crystal.
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Counting states in r-space and k-space

r-space (a crystal with PBC) k-space

. . . . . J
[ ‘ © @ >0
L J L] L] L ? L] L >
. . . . . d

L o o o o o 4 N points here . N points here
L L L J L J L L ] 1St BZ
] o [ ]
* N unit cells (1 atom/cell) * Infinite reciprocal lattice points
« If each atom contributes g * N k-points in 15t BZ

valence electrons, then Ng

electrons in total. - N k-points in an energy band
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Energy gap Bloch theorem The central eq. Empty lattice approx. TBM

Band theory of solids

Insulator metal semimetal semiconductor
(n-type)  (p-type)

energy
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Energy gap Bloch theorem

Difference between conductor and insulator (Wilson, 1931)

* There are N k-points in an energy band, each k-point can be
occupied by two electrons (spin up and down).

.. each energy band has 2N “seats” for electrons. conductor

- If a solid has odd number of valence electron per unit cell, /\
then the energy band is half-filled (conductor).

For example, all alkali metals are conductors.

« If a solid has even number of valence electron per unit cell,
then the energy band can either be filled or not.

E.g., alkali-earth elements can be conductors or insulators.

Insulator conductor

s t E

K K

»
»

v

Filled band partially-filled bands



Energy gap Bloch theorem The central eq.

The central equation
Some mathematics before we move on

* Fourier decomposition

If f(r) has lattice translation symmetry, that is, f(r)=f(r+R) for any
lattice vector R, then it can be expanded as,

f(r)= Ze"é'?ﬁ , Where G is the reciprocal lattice vector.
G

(see Chap 2)

* Orthogonal relation

i(G-GYx
1D j dx e =adg g

cell

3D j d’r 7 = VO, .| SeeA+M,App.D
cell
Vél; - for discrete &

note: Id3r o Kk
all

(272)3 ) (lg —k ') for continuous k




e 0o 00 e 00 0 0 o o o
Energy gap Bloch theorem The central eq.

How do we determine u,(r) from lattice potential energy U(r)?

-\ 2
Schrodinger eq. (13+hk)

+U((F) (u . (F)=¢eu.(r)
2m

Keypoint: go to k-space to avoid derivatives

UF+R)=U(F), u.(F+R)=u () Both are periodic functions
Fourier transform:

1. the lattice potential B G
U(r)= Zé:Uée G=2TIn/a

2. the wave function u(r)= Z C. (G)e " | k=21niL
G

=) Schrdd. eq. in k-space (‘913_(; —gk)Clg(é)nLZUé,_éCg(é') =0f & =
=

aka. the central eq. Kittel uses A,
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The central eq.

Matrix form of the central eq. (in 1D)  G=ng (g=2T1/a)

For a fixed Kk,

0
8k+2g B gk

U

-g
2g

U.
U
U.

4g

Us, U, C,(-2g)

U2g U3g C,(-2)

U, U,, C,(0)
— & U, C,(g)

U &2 & )\ Cr(29)

* For a given k, there are many eigenvalues ¢, with eigenvectors C,,.

* The eigenvalues ¢, (k) determine the energy bands.

* The eigenvectors {C,,(G), V G} determine the Bloch states:

u, (x)= Z Co (G)e_ti
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The central eq.

Example: U(x) = 2U cos2mix/a
= U exp(2mix/a)+U exp(-2mix/a) (U,=U_=U)
s ¢ — & U 0 0 0 C.(-2g)
U &,-5 U 0 0 C,(-g)
0 g —&, 0 C,(0)
0 0 U & ,-¢§ U C.(2)
0 0 0 U Ep 2y — &

Even though it is an infinite matrix, in practice,

C,(2g)

it an be truncated according to the precision desired.
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Energy gap Bloch theorem The central eq.

* What are the eigenenergies and eigenstates when U=07?

U(x)=0 & 1 Cc(-g=1 C)=1 C(g)=1

/53k

Eok

v

-29 -9 0 ik g 29 k

1st BZ

* when U(x)#0, for a particular k, u,, is a linear

combination of plane waves, with coefficients C,, :

u, (x)= Z Co (G)e_ti




* From the central eq., one can see that

C,.c(G+G)=C,(G)

u,, (x) = Z Co (G)e_ti

= U, iic (x) = e_ti”nk (x) Comparison:

Vi (X) = 1, (%) & |y F+R)=c""y ()

* Bloch energy &, y.g = &, (- infoin the 15t BZ is enough)
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Energy gap Bloch theorem The central eq.

Approximation of the central equation
* The Bloch state v, (x)=) C, (G)e" ™"
G

is a superposition of ... exp[i(k-g)x], exp[ikx], exp[i(k+g)x] ...

* If k ~ 0, then the most significant component of vy ,(x) is See Fig in

expl[ikx] (little superposition from other plane waves). previous page

* If kK ~ g/2, then the most significant components of y,,(x) and y(x)
are exp[i(k-g)x] and exp[ikx], others can be neglected.

Truncation:
‘91?+2g — & U 0 0 0 C,(-2g)
U &,—& U 0 0 C,(-g)
0 g —& 0 C.(0)| [=0
0 0 U__&,-& v G . cutoff for
0 0 0 U &y —& )\ Ci(22) k~g/2!
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Energy gap Bloch theorem The central eq.

Energy levels near zone boundary k ~ g/2
g —¢& U [ C(k) j -
U ¢ Clk—g)
* Energy eigenvalues * Energy eigenstates

V. (x)=C, (k)™ +C, (k- g)e' #"

Truncated form

-&

g(k)—l( gkg 1\/ —gkg (2U)2

zl\)l

g
define k=k— > V.,
-2 28"
then &, (k)= ¢9/2iU+ﬁ 1+—22
2m U
parabola< ' |
1 Zone b(l)undary W_ | i
COS(7Z')C/CZ)
= ¥ (X)=y .
0 £ £ sm(mc/a)

Agree with the diffraction result.
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Energy gap Bloch theorem The central eq.

3 ways to plot the energy bands:

(k'elst BZ)
Eni 7 &
(k=k'tng)

Sometimes it is convenient to
repeat the domains of k

Kittel, p.225 (Chap 9)
Fig from Dr. Suzukis’ note (SUNY@AIbany)

Extended zone
scheme

Reduced zone
scheme




Energy gap Bloch theorem The central eq. Empty lattice approx.

Nearly-free-electron model in 2-dim (energy bands)
« Ot order approx.: empty lattice (U(r)=0)

« 1st order approx.: energy gap opened by Bragg reflection

X

Laue diffraction | » ~ G
condition 9)

©
N

N

— Bragg reflection whenever k hits the BZ boundary
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“Empty lattice” in 2D
* Free electron in vacuum:
hk*

 2m

(a parabolic surface)

€k

* Free electron in empty lattice:

h? (k’+G)2
Sy =& =
2m
k=k'+G
k'el”BZ

How to fold a parabolic surface
back to the first BZ?

e © ¢ 06 0 0 0 o e o
The central eq.

Empty lattice approx.

2D square lattice’s reciprocal lattice

A

Bl e T
1

v
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Energy gap Bloch theorem The central eq. Empty lattice approx.

Folded parabola along ' X (reduced zone scheme)

* There would be energy
gaps at BZ boundaries
because of the Bragg
reflection

* The folded parabola
along 'M is different

M

I X

« Usually we plot only
major directions. For 2D
square lattice, they are I'X,
XM, M’
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Energy gap Bloch theorem The central eq. Empty lattice approx.

Empty Lattice in 3D
Simple cubic lattice

n(k'+GY

E =&, =
k k
" 2m

k=k'+G
k'el"BZ

_m 0 w
= k,— “

Bzm.d h Ca/2w (000} e(k,00)
T T T T T R T T T R R T R T T R R e ey
1 000 0 2
2,3 100,100 _ (2ar/a)® (k, * 2n/a)?
4587 010,010,001,001 (2aia ) k2 + (2arja)
5.9,10,11 110,101,110,101 2{ 2arda)® (k, + 2m/a)® + (20/a)
12,13,14,15 110,101,110,101 3 2r/a)* k. — 2mia) + (2w/a)®
16,17,18,19 011,011,011,011 2(2aria)? KD+ 2{2ma)
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Energy gap Bloch theorem The central eq. Empty lattice approx.

Empty FCC lattice e

1st Brillouin zone:

Energy bands for empty FCC lattice
along the I'-X direction.



Energy gap

4

3

Comparison with real band structure

The energy bands for
“empty” FCC lattice

$ ;‘»! € ;:l/
¥
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Bloch theorem

-1“\

S
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The central eq.

[ B LN S W, T T Y ]

e o 0 0 o o
Empty lattice approx.

Actual band structure for
copper (FCC, 3d'94s?)

d bands

From Dr. J. Yates’s ppt



