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Energy bands

• Nearly-free electron model

• Bloch theorem

• The central equation

• Empty-lattice approximation

• Tight-binding model (see Chap 9)

NFE model is good for Na, K, Al… etc, 
in which the lattice potential is only a 
small perturbation to the electron sea.



History of band theory
(Ref: chap 4 of 半導體的故事, by 李雅明)

• 1928 – Bloch theory (Ph.D. dissertation under Heisenberg)

• 1929/30 – Peierls

• nearly-free electron model, diffraction and energy gap

• electron effective mass

• a filled band does not conduct

• hole 

• umklapp process for phonons

• 1930 – Kroenig-Penny model

• 1931 – Wilson explains metal/semiconductor/insulator



• Density distribution of the two standing waves

Nearly-free electron model

Free electron plane wave

• Consider 1-dim case, when we turn on a lattice potential with period a, 
the electron wave will be Bragg reflected when k=±π/a, which forms two 
different types of standing wave (Peierls, 1930).
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• These 2 standing waves have different electrostatic energies.

This is the origin of the energy gap.
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• Lattice effect on free electron’s energy dispersion

Q: where are the energy gaps when V(x)=V1 cos(2πx/a)+V2 cos(4πx/a)?

If potential V(x)=Vcos(2πx/a), then

 

 

Note: Kittel use   

potential energy U (=eV)

Electron’s group velocity is zero near the boundary of the 1st BZ 

(because of the standing wave).
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a

• Electron energy dispersion calculated from the Schrödinger eq. 

(read Kittel if you’re interested in this calculation)

Energy bands 
(Kittel, p.168)

A solvable model in 1-dim: The Kroenig-Penny model (1930)

(not a bad model for superlattice)

Delta functions
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Bloch recalled,

The main problem was to explain how the electrons could sneak by 

all the ions in a metal so as to avoid a mean free path of the order of 

atomic distances. … the observed resistances [demands] that the 

mean free path become longer and longer with decreasing 

temperature.

By straight Fourier analysis I found to my delight that the wave differed 

from the plane wave of free electrons only by a periodic modulation. 

This was so simple that I didn't think it could be much of a discovery, 

but when I showed it to Heisenberg he said right away: "That's it!"

Hoddeson L – Out of the Crystal Maze, p.107
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Bloch wave function:



The electron states in a periodic potential is of the form

, where uk(r+R)= uk(r) is a cell-periodic function.

Bloch theorem (1928)

• A simple proof for 1-dim (this is basically Bloch’s original proof):

Consider periodic BC, 
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|Ψ(x)|2 is the same in each unit cell. Ψ(x+a)=CΨ(x), C is a phase

Similar proof applies to higher dimension.
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uk(r) depends on the form of the periodic lattice potential.

← Effective Hamiltonian for uk(r)

22

within one unit cell
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• Schrödinger eq for ψk:

• Schrödinger eq for uk:

Lattice 
potential

Energy 
eigenstate
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Periodic B.C.
(3-dim case)

Therefore, there are N k-points in a BZ, where

N = total number of unit cells in the crystal.
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Counting states in r-space and k-space

r-space

• N unit cells (1 atom/cell)

• If each atom contributes q
valence electrons, then Nq
electrons in total.

• Infinite reciprocal lattice points

• N k-points in 1st BZ 

 N k-points in an energy band  

(a crystal with PBC)

N points here

k-space

N points here

R G

Energy gap Bloch theorem The central eq. Empty lattice approx. TBM

1st BZ

important



energy

Insulator        metal        semimetal       semiconductor
(n-type) (p-type)

Band theory of solids
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• If even number of electrons per primitive cell, then there are 2 

possibilities: (a) no energy overlap or (b) energy overlap.      

E.g., alkali-earth elements can be conductors or insulators. 

• If a solid has odd number of valence electron per unit cell, 

then the energy band is half-filled (conductor).                     

For example, all alkali metals are conductors.

Difference between conductor and insulator (Wilson, 1931)

• There are N k-points in an energy band, each k-point can be 

occupied by two electrons (spin up and down). 

∴ each energy band has 2N “seats” for electrons.

• If a solid has even number of valence electron per unit cell, 

then the energy band can either be filled or not. 
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The central equation
Some mathematics before we move on
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• Orthogonal relation

If f(r) has lattice translation symmetry, that is, f(r)=f(r+R) for any 

lattice vector R, then it can be expanded as,                                        

,  where G is the reciprocal lattice vector.( ) iG r

G
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(see Chap 2)

• Fourier decomposition
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How do we determine uk(r) from lattice potential energy U(r)?

Schrödinger eq.

Schröd. eq. in k-space

Fourier transform: 

1. the lattice potential

2. the wave function

G=2πn/a

k=2πn/L
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Keypoint: go to k-space to avoid derivatives

Kittel uses λk
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aka. the central eq.

unkown
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Both are periodic functions



Matrix form of the central eq. (in 1D)

• For a given k, there are many eigenvalues nk, with eigenvectors Cnk.
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G=ng (g≡2π/a)

For a fixed k,

• The eigenvectors {Cnk(G), G} determine the Bloch states: 

• The eigenvalues εn(k) determine the energy bands.
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U(x) = 2U cos2πx/a 

= U exp(2πix/a)+U exp(-2πix/a) (Ug=U-g=U)
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Example:

Even though it is an infinite matrix, in practice, 

it an be truncated according to the precision desired.
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1k

2k

3k

1st BZ

• when U(x)≠0, for a particular k, unk is a linear 

combination of plane waves, with coefficients Cnk : 

( ) ( ) iGx
nk nk

G

u x C G e

0 g k

εk C(-g)=1       C(0)=1        C(g)=1U(x)=0

2g-2g -g

• What are the eigenenergies and eigenstates when U=0?
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• From the central eq., one can see that

• Bloch energy n,k+G = nk (∴ info in the 1st BZ is enough)
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Periodic gauge. 
Not valid in the presence of topological obstruction (QHE, TI …)

Comparison:



0
2

0

0

0

0
2

                                                                                     

( 2 )0 0 0

( )0 0

(0)0 0

( )0 0

(2 )0 0 0

kk g k

kk g k

kk k

kk g k

kk g k

C gU

C gU U

CU U

C gU U

C gU

 
 

 
 

 









   
   
 
 

 
   

 

0

                                                                                     




 





 

• If k ～ 0, then the most significant component of ψ1k(x) is

exp[ikx] (little superposition from other plane waves).

• If k ～ g/2, then the most significant components of ψ1k(x) and ψ2k(x)

are exp[i(k-g)x] and exp[ikx], others can be neglected.

• The Bloch state 

is a superposition of … exp[i(k-g)x], exp[ikx], exp[i(k+g)x] …
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G
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cutoff for
k～g/2!

Approximation of the central equation

Truncation:

See Fig in 
previous page
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Energy levels near zone boundary k ～ g/2

Truncated form
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• Energy eigenstates

Agree with the diffraction result.
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Sometimes it is convenient to 
repeat the domains of k

, '

( ' 1st BZ)

 

( ' )
n k k

k

k k ng

 


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Fig from Dr. Suzukis’ note (SUNY@Albany)

3 ways to plot the energy bands:

Kittel, p.225 (Chap 9)

1st

Brillouin 
zone
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Nearly-free-electron model in 2-dim (energy bands)

• 0th order approx.: empty lattice (U(r)=0)

• 1st order approx.: energy gap opened by Bragg reflection


k G

G
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2

→ Bragg reflection whenever k hits the BZ boundary

Laue diffraction 
condition 

G/2

k
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“Empty lattice” in 2D

2π/a

Γ X

MHow to fold a parabolic surface 

back to the first BZ?

• Free electron in vacuum:

2 2

2m
 k

k

• Free electron in empty lattice:
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2D square lattice’s reciprocal lattice
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Folded parabola along ΓX (reduced zone scheme)

• Usually we plot only 
major directions. For 2D 
square lattice, they are ΓX, 
XM, MΓ

• The folded parabola 
along ΓM is different

Γ X

M

2π/a

• There would be energy 
gaps at BZ boundaries 
because of the Bragg 
reflection
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Empty Lattice in 3D

Simple cubic lattice
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Energy bands for empty FCC lattice 
along the Γ-X direction.

Empty FCC lattice

1st Brillouin zone:
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The energy bands for  
“empty” FCC lattice

Actual band structure for 
copper (FCC, 3d104s1)

Comparison with real band structure

From Dr. J. Yates’s ppt

d bands

lampx.tugraz.at/~hadley/ss1/empty/empty.php
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