Phonons II: Thermal properties

• Heat capacity of a crystal
 • density of state
 • Einstein mode
 • Debye model
• anharmonic effect
 • thermal conduction

A technician holding a silica fiber thermal insulation tile at 1300 Celsius

See www.youtube.com/watch?time_continue=3&v=Pp9Yax8UNoM
Heat capacity: experiment

Heat capacity drops to zero at low temperature

Heat capacity approaches $3R$ ($\sim 25 \text{ J/K}$) at high temperature (Dulong-Petit law, 1819)

After rescaling the temperature by θ (Debye temperature), which differs from material to material, a universal behavior emerges:
Debye temperature

<table>
<thead>
<tr>
<th>Li</th>
<th>Be</th>
<th>344</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>Mg</td>
<td>158</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>91</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>56</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>38</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>163</td>
</tr>
</tbody>
</table>

| Table 1 Debye temperature and thermal conductivitya |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| B | C | N | O | F | Ne |
| 2230 | 1.29 | 75 |
| Al | Si | P | S | Cl | Ar |
| 428 | 645 | 92 |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn |
| 360 | 0.16 | 1400 | 2.00 |
| Nb | Mo | 380 | 0.31 | 0.94 | 0.08 | 1.00 | 0.91 | 4.01 | 1.16 |
| Rb | Sr | 280 | 0.17 | 0.23 | 2.75 | 4.50 | 6.00 | 4.80 | 2.74 | 2.25 | 209 |
| Cs | Ba | La β | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg |
| 110 | 142 | 252 | 0.14 | 0.23 | 0.58 | 1.74 | 0.48 | 0.88 | 1.47 | 0.72 | 3.17 |
| Fr | Ra | Ac | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy |
| 0.11 | 0.12 | 0.16 | 0.13 | 200 | 0.11 | 1.11 | 210 | 0.11 | 0.16 | 0.14 | 0.17 |
| Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md |
| 163 | 207 | 0.28 | 0.06 | 0.07 | 120 | 0.35 | 0.16 |

In general, a harder material has a higher Debye temperature.
• Dulong-Petit’s law is a result of the **equipartition of energy**.

• Early 1900’s, theory fails at low temperature (for diamond at *room temperature*, only 1/5 of expected value!)

• The classical theory of heat capacity is in trouble, just like the classical theory of thermal radiation.

Planck: Quantization of energy is a mathematical trick.

Einstein: Quantization of energy is real. It appears not only in thermal radiation, photoelectric effect, but also in crystal vibration.
Heat capacity: Quantum theory

- **Heat capacity** is nothing but the change of $U(T)$ w.r.t. to T:

$$C_V = \left(\frac{\partial U}{\partial T} \right)_V$$

- **Internal energy** U of a crystal is the summation of vibrational energies (consider an insulator so there’s no electronic energies)

$$U(T) = \sum_{k,s} (n_{k,s} + 1/2)\hbar \omega_{k,s}$$

where s sums over different phonon branches (L/T, A/O).

- For a crystal in thermal equilibrium, the average phonon number is (see Kittel, p.107)

$$\langle n_{k,s} \rangle = \frac{1}{e^{\hbar \omega_{k,s} / kT} - 1}, \quad \text{Bose-Einstein distribution}$$

- Therefore, we have

$$U(T) = \sum_{k,s} \left(\frac{\hbar \omega_{k,s}}{e^{\hbar \omega_{k,s} / kT} - 1} + \frac{\hbar \omega_{k,s}}{2} \right)$$
Connection between summation and integral

\[\int_a^b dx f(x) = \lim_{\Delta x \to 0} \sum_i \Delta x \cdot f(x_i), \text{ or } \]

\[\sum_i f(x_i) \equiv \int_a^b \frac{dx}{\Delta x} f(x). \]

Generalization to 3-dim:

\[\sum_{\bar{x}} f(\bar{x}) \equiv \int \frac{d^3 x}{\Delta^3 x} f(\bar{x}) \]

or \[\sum_{\bar{k}} f(\bar{k}) \equiv \int \frac{d^3 k}{\Delta^3 k} f(\bar{k}) \text{ in solid state} \]

\[\Delta^3 k = \left(\frac{2\pi}{L} \right)^3 \]
Density of states $D(\omega)$ (DOS, 態密度)

- $D(\omega)d\omega$ is the number of states within the surfaces of constant ω and $\omega+d\omega$

$$D(\omega)d\omega = \int_{\Delta^3k} \frac{d^3k}{\Delta^3k}, \quad \Delta^3k = \left(\frac{2\pi}{L}\right)^3$$

$$\sum_k f(\omega_k) \equiv \int \frac{d^3k}{\Delta^3k} f(\omega_k) = \int d\omega D(\omega) f(\omega)$$

- For example, assume $N=16$, then there are $2\times2=4$ states within the interval $d\omega$

- Once we know the DOS, we can reduce the 3-dim k-integral to a 1-dim ω integral.

Alternative definition:

$$D(\omega) = \int \frac{d^3k}{\Delta^3k} \delta(\omega_k - \omega)$$

- Flatter $\omega(k)$ curve, higher DOS.
DOS: 1-dim

\[D(\omega) d\omega = 2 \frac{dk}{\Delta k} = 2 \frac{dk / d\omega}{\Delta k} d\omega \]

\[\therefore D(\omega) = \begin{cases} \frac{L}{\pi} \frac{1}{d\omega / dk} & \text{for } \omega \leq \omega_M \\ 0 & \text{otherwise} \end{cases} \]

Ex: Calculate \(D(\omega) \) for the 1-dim string with \(\omega(k) = \omega_M |\sin(ka/2)| \)

Prob.1(a)

DOS: 3-dim (assume \(\omega(k) = \omega(k) \) is isotropic)

\[D(\omega) d\omega = \int_{\text{shell}} \frac{d^3k}{\Delta^3k} = \frac{4\pi}{\Delta^3k} k^2 dk = \frac{L^3}{2\pi^2} \frac{k^2}{d\omega / dk} d\omega \]

for example, if \(\omega = \nu k \), then \(D(\omega) = V \omega^2 / 2\pi^2 \nu^3 \)

Non-dispersive

It’s not necessary to memorize the result, just remember the way of deriving it.
Einstein model (1907)

Assume that

1. each atom **vibrates independently** of each other, and
2. every atom has **the same vibration frequency** ω_0

- The DOS can be written as

$$D(\omega) = 3N\delta(\omega - \omega_0)$$

- 3 dim \times
- number of atoms
Einstein model

\[U = 3N \left(\langle n \rangle + \frac{1}{2} \right) \hbar \omega_0 = 3N \frac{\hbar \omega_0}{\exp(\hbar \omega_0 / kT) - 1} + 3N \frac{\hbar \omega_0}{2} \]

\[C_V = (\partial U / \partial T)_V = 3Nk \left(\frac{\hbar \omega_0}{kT} \right)^2 \frac{e^{\hbar \omega_0 / kT}}{(e^{\hbar \omega_0 / kT} - 1)^2} \]

\[\approx e^{-\hbar \omega_0 / kT} \text{ as } T \rightarrow 0 K \]

vibration is “frozen” at low T

Data of diamond from Einstein’s 1907 paper.
Debye model (1912)

Based on classical elasticity theory (continuous, prior to the classical theory of lattice dynamics).

Vibration produces waves

\[U(T) = \sum_{k,s} \left\langle n_{k,s} \right\rangle \hbar \omega_{k,s} \quad (\hbar \omega_{k,s}/2 \text{ neglected}) \]

\[= \sum_{s=1}^{3} \int d\omega D_s(\omega) \frac{\hbar \omega}{e^{\hbar \omega/(kT)} - 1} \]

Debye assumed that
1. the wave is non-dispersive: \(\omega = \nu_s k \) (s=L, T1, T2).
2. Therefore, \(D_s(\omega) = V \omega^2 / 2 \pi^2 \nu_s^3 \) (quadratic)
3. (Iso-frequency surface is a sphere)
2. The 1st BZ is approximated by a sphere with the same total number of states.

High-frequency cut-off ω_D:

- A simple estimate
 \[\frac{4}{3} \pi k_D^3 \frac{\Delta^3 k}{\Lambda^3} = N \]
 \[\rightarrow \quad \omega_D = \nu k_D = \nu (6\pi^2 n)^{1/3} \]

- or \[\sum_{s=1}^{3} \int_{0}^{\omega_p} d\omega D_s(\omega) = 3N \]
 \[\rightarrow \sum_{s=1}^{3} \frac{V \omega_D^3}{6\pi^2 \nu_s^3} = 3N \]
 \[\frac{3}{\nu^3} \equiv \sum_{s=1}^{3} \frac{1}{\nu_s^3} \]
 \[\rightarrow \omega_D = \nu (6\pi^2 n)^{1/3}, \quad n = N / V \]

Debye frequency
Internal energy and heat capacity

\[U(T) = \sum_{s=1}^{3} \frac{V}{2\pi^2 v_s^3} \int_0^{\omega_D} d\omega \omega^2 \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \]

\[= \frac{3V}{2\pi^2 v^3} \hbar \left(\frac{k_B T}{\hbar} \right)^4 \int_0^{x_D} dx \frac{x^3}{e^x - 1}, \quad x_D = \frac{\hbar \omega_D}{k_B T} = \frac{\theta}{T}, \quad k_B \theta \equiv \hbar \omega_D \]

\[= 9Nk_B T \left(\frac{T}{\theta} \right)^2 \int_0^{x_D} dx \frac{x^3}{e^x - 1} = \frac{\pi^4}{15} \text{ as } T \to 0 (x_D \to \infty) \]

\[\therefore C_V = \frac{12\pi^4}{5} Nk_B \left(\frac{T}{\theta} \right)^3 \propto T^3 \text{ as } T \to 0 \]

(Debye \text{ } T^3 \text{ law})

At low \(T \), Debye’s curve drops slowly because long wavelength vibration can still be excited.
A simple explanation of the T^3-dependence (at low T):

First, define $\hbar \nu k_T = k_B T$

Suppose that

1. All the phonons with wave vector $k < k_T$ are excited, while the modes between k_T and k_D are not excited.

2. Each excited mode roughly has thermal energy $k_B T$

\[\frac{\hbar \nu}{k_D} = \frac{k_B T}{k_D} = \frac{T}{\theta} \]

- Then the fraction of excited modes
 \[= \left(\frac{k_T}{k_D} \right)^3 = \left(\frac{T}{\theta} \right)^3. \]

- Thermal energy $U \sim k_B T \cdot 3N(T/\theta)^3$

- \therefore Heat capacity $C \sim 12Nk_B(T/\theta)^3$
DOS for general dispersion relation

An energy shell

Surface $\omega = \text{const}$

$\omega + d\omega = \text{const}$

$D(\omega)d\omega = \left(\frac{L}{2\pi}\right)^3 \int_{\text{Shell}} d^3k$

$d^3k = dS_\omega dk_\perp$

$d\omega = \nabla_\vec{k} \omega \cdot dk = \left| \nabla_{\vec{k}} \omega \right| dk_\perp$

$\therefore d^3k = dS_\omega \frac{d\omega}{\left| \nabla_{\vec{k}} \omega \right|}$

$\Rightarrow D(\omega) = \left(\frac{L}{2\pi}\right)^3 \int dS_\omega \frac{d\omega}{\left| \nabla_{\vec{k}} \omega \right|}$

If $\nu_g = \left| \nabla_{\vec{k}} \omega \right| = 0$, then there is "van Hove singularity" (1953)

An energy shell

Group velocity

Heat capacity, DOS

Einstein model, Debye model

Anharmonic effect

Silicon

Density of states $Z(\nu)$

Debye approximation

Frequency ν (10^{12} s$^{-1}$)
Dispersion relation and DOS

Giannozzi et al, PRB 43, 7231 (1991)
• Heat capacity of a crystal
 • density of states
 • Einstein model
 • Debye model
• anharmonic effect
 • thermal conduction
Aharmonic effect in crystals

If there is no aharmonic effect, then

- No thermal expansion
- No phonon-phonon interaction
- Thermal conductivity would be infinite (for a pure crystal)
- Heat capacity becomes constant at high T
- …
Thermal conductivity

- **Thermal current density** (Fourier’s law, 1807)
 \[\mathbf{J}_U = -K \nabla T \quad \sim \quad \mathbf{J} = -\sigma \nabla \phi \]

- In **metals**, thermal current is carried by both electrons and phonons. In **insulators**, only phonons can be carriers.

- The collection of phonons is similar to an ideal gas

<table>
<thead>
<tr>
<th>THE CLASSICAL GAS vs. THE PHONON GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSICAL GAS OF MOLECULES</td>
</tr>
<tr>
<td>Container</td>
</tr>
<tr>
<td>Collisions</td>
</tr>
<tr>
<td>Energy conserved in collisions</td>
</tr>
<tr>
<td>(Crystal) momentum conserved in collisions</td>
</tr>
<tr>
<td>Number conserved in collisions</td>
</tr>
</tbody>
</table>

Ashcroft and Mermin, Chaps 23, 24
• Thermal conductivity

\[K = \frac{1}{3} c v \ell \]

- \(c \): specific heat
- \(v \): phonon velocity
- \(\ell \): mean free path

 Dimensional analysis:

Assume \([K] = [c]^a [v]^b [\ell]^c\)

\[\rightarrow a = b = c = 1 \]

• The mean free path of a phonon can be affected by defects, boundary, and other phonons.
Phonon-phonon scattering

A result of the anharmonic vibration

Modulation of elastic const.
(\sim \text{ acoustic grating})

\[F = -kx + k'x^2 \]
\[= -(k - k'x)x \]
\[\therefore k_{\text{eff}}(x) = k - k'x \]

- Total momentum of the 2 phonons remains the same during the scattering. \textbf{No resistance to thermal current?}
Phonon-phonon scattering

- Normal process:

- Umklapp process (轉向過程, Peierls 1929):

Figs from wiki
◆ **T-dependence of the phonon mean free path ℓ**

- **Low T:** For a crystal with few defects, the mean free path is limited mainly by the boundary of the sample.

- **High T:** The number of phonons are proportional to T. The mean free path $\sim 1/T^x$ ($x=1\sim2$).

◆ **T-dependence of the lattice thermal conductivity $K (\sim cv\ell)$**

- **Low T:** $K \sim c \sim T^3$

- **High T:** $K \sim \ell \sim 1/T$

Boer and Pohl, Semiconductor Physics 2018
Boundary scattering

LiF

Isotope scattering

LiF with various Li-6 isotopes (0.02% to 50%)

www.ucl.ac.uk/~ucapahh/teaching/3C25/Lecture12s.pdf

Berman and Brock PRS London 1965