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Phonons I: Crystal vibrations

» one-dimensional vibration

« one-dimensional vibration for a crystal with basis
» three-dimensional vibration

» quantum theory of vibration
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1D lattice

One-dimensional vibration (classical analysis)
« consider only longitudinal motion

« consider only nearest-neighbor (NN) coupling

¥n—1 b Upn+q _
| o o e u,: displacement
- . nt 1 Wil a: elastic constant
d’u
M d 2” = a(unﬂ —Z/ln) _a(un _un—l)
4

Consider a motion in which all atoms vibrate sinusoidally
with the same frequency o (a steady state)

let u (t)=v,e' - takereal partonly

= Ma)2vn =a(2v,—v,.,—Vv,,) ¢« adifference equation

2 -1 0 -1\ 12 Periodic
-1 2 - 0w v Boundary
= P = %a)z ? Condition
0O . - =1 : a :
-1 0 -1 2 )\v, Vy
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The equation remains invariant when n > n+1

For a system with translation symmetry,

there is a plane wave solution.

kX

Assume v, = Ae™"", where X =na,

ie. u =Ae™ e
then we'll get

Ma)2eikna _ al:zeikna _eik(n+l)a _eik(n—l)a:l’

which leads to
w(k)=w,|sin(ka/2)

T

dispersion relation ({:&4fH%)

@, =2Nal M

9
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Dispersion curve o(k)=w,, |sin(ka / 2)|

A (0
A<2a &« A%2a— J1<2a (redundant)

v

-1t/a mt/a

» The wave outside the [-11/a, T1/a] is unphysical,

so we restrict k to the first BZ

* The waves with wave numbers k and k+21/a describe
the same atomic displacement
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Displacement of the n-th atom

u (t)=A4e"™ ", X =na

Pattern of vibration: LertrataVegoangtl

«k ~ 0, exp(ikX,) ~ 1. —7/a 0 %/a
Every atom move in unison. Little restoring force.
* k ~ /a, exp(ikX,) ~ (-1).

Adjacent atoms move in opposite directions. Maximum restoring force.

Phase velocity v, and Group velocity v,

w
ek ~ 0, w = (Wyal2)k, Yp T
V,=V,= Wy,al2 d

(For linear dispersion, phase velocity = group velocity) V, = dk

* k ~ 1/a, group velocity ~ 0
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The values of k are discrete for a finite system.
For a 1-dim crystal with N atoms, consider
Peiodic boundary condition (PBC): uy(f) = uy(f)

(Note: PBC allows travelling wave, while open BC gives standing wave)

u, = Aexpli(kX, — ot)],
u, =u, = exp(ikNa) =1

k=2 12N
N a
N N
or m=——+1-—
2
Ak=2n/Na

e Each k describes a normal mode of the vibration
i TE A5
 Number of k's = number of atoms N
(or, the number of unit cells)
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1D lattice

Normal mode (ref: wiki) ~ energy eigenstate

symmetric antisymmetric
stretching stretching bending

)

@) w O 7 O=>
H” OH H7 4 H” OH
4 N\ P L
Free molecules: f=109.6 THz f=47.8 THz f=112.6 THz

Liquid: f=101.9 THz

« A pattern of vibration in which all parts of the system move sinusoidally with
the same frequency (called natural frequency).

* Normal mode can vibrate independently. That is, the excitation of one mode
will not cause the motion of a different normal mode.

» A general vibration can be considered as a superposition of normal modes.

' o 3 I
O 6 E

uk.comsol.com/multiphysics/eigenfrequency-analysis
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1D lattice 1D lattice with basis

* one-dimensional vibration
 one-dimensional vibration for a crystal with basis
* three-dimensional vibration

« quantum theory of vibration
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1D lattice 1D lattice with basis

Vibration of a crystal with 2 atoms in a unit cell

Vn 1 un Vn un+1

o—(O—eo—O——7=0
M, M5 ~ -
a
d’u,
M, 1 =alv, +v, , —2u),
dzvn
M, 1 =a(u,,  +u, —2v).

kna
u Aeé' By
Assume ( nj = ( ilk(n+1/2)a j e
v, Ae

20— M0’ —20acos(kal/2) | 4 ) 0
2acos(kal/2) 2a-M,»° )\ 4, ’

J— 2 J—
o det 20-M, 0 2a cos(ka /22) _o.
—2acos(kal/2) 2a-M,w

e[ L U (1) _4sin(ka/2)
’ Ml MZ - Ml MZ MIMZ .



1D lattice 1D lattice with basis
_ _ _ important
Two branches of dispersion curves (assuming M, > M,)
1/2
L))
M,
| . d
l—' Gap Optical 1?-2“/ M2 TR
I}_--‘ . . .@a/Mz) 1!‘2
! | B
5
l |
1 -
—x/ a YIRS 7/ a %

Patterns of vibration: (Prob.3)
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See a nice demo at http://www.ph2.uni-koeln.de/505.html
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How many normal modes (k points) in each branch?

. u A ikna .
ImpOSIHg PBC on ( ”j = [A eilkfn+1/2)a } e_lwt
2

vl’l

u u
E N]:( 0) = exp(ikNa) =1

Vn Vo
k=TT 100N

N a
N N . : :

or m = —3+1,---7 Same as before (a lattice with no basis)

* There are 2 branches, so the total number of k points (normal modes)
is 2N, same as the total DOF of the atoms.

 This equality remains true for complex crystals in higher dimensions.

Q: what happens if the two atoms in a basis are of the same type?
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1D lattice 1D lattice with basis 3D lattice

* one-dimensional vibration
» one-dimensional vibration for a crystal with basis
» three-dimensional vibration

« quantum theory of vibration
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1D lattice with basis

° e o
3D lattice

Three-dimensional vibration

Along a given direction of propagation, there are
1 longitudinal wave and 2 transverse waves,
each may have different velocities

e

Wave in [100] direction

Sodium
(BCC)

Frequency in 10'* Hz
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Figure 11 The dispersion curves of sodium for phonons propagating in the [001], [110], and [111]

directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse,
March and Bowers.




1D lattice 1D lattice with basis 3D lattice
important
3D crystal with basis FCC lattice with 2-atom basis
cm-
GaAs

Rules of thumb: W

* For a 3-dim crystal, if each unit cell
has p atoms, then there are

200

3 acoustic branches, _—

3(p-1) optical branches

« If a crystal has N unit cells, then each

branch has N normal modes (number of k-
points for each dispersion curve).

* As a result, the total number of normal
modes of the whole crystal is 3pN
(= total DOF of atoms in this crystal).
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1D lattice 1D lattice with basis 3D lattice guantized vibration

* one-dimensional vibration
» one-dimensional vibration for a crystal with basis
* three-dimensional vibration

« quantum theory of vibration



1D lattice 1D lattice with basis 3D lattice guantized vibration
L optional
Quantum theory of vibration b
Review: 1D simple harmonic oscillator (DOF=1)
P
H="—+=x’
2m 2

« Classically, it oscillates with a single freq w=(a/m)"?2

Quantization:  [x,p|=ih

- 1 i :
define a= _( [mw x + p] Creation and
N 27 Nmao annihilation operators:
then [a,ad"] =1 if [n> is an energy

i eigenstate, then
HZ(CZTCI—FEjha) a|n>:\/;|n_1>
:>H‘n>:[n+%jha)‘n> a'|m)=n+1|n+1)

* After quantization, the energy becomes discrete ¢ = (n +%) how

n=0,1,2...
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1D lattice 1D lattice with basis 3D lattice guantized vibration

Quantization of a 1-dim vibrating crystal (see Kittel App. C)

uﬂ'—l ﬂ.+1
n—1 n n+ 1 [~—a —|

- Energy dispersion of a normal mode (a given k): 7o,

« Suppose the number of energy quanta (called phonons, &)
being excited is n,, then the total vibration energy

U= ZEnk jha)k

» There are no interaction between phonons, so the vibrations can

be treated as a “free” phonon gas.

(this is no longer true if the elastic force is nonlinear.)

* In general, for a 3D crystal with atom basis

1
U =k2(nk +5jha),€,s, s=1--3p (L/T, A/O...)



1D lattice 1D lattice with basis 3D lattice guantized vibration optional

A k-mode phonon acts as if it has momentum 7k in a scattering process
(for a math proof, see Ashcroft and Mermin, App. M)

Crystal recoils with
momentum AG

» Elastic scattering of photon: hk = hk - hG (Laue condition)
* Inelastic scattering of photon: hk = hk + hK,ponon - #G (Raman scattering)
hO t Elastic
ho — i (Raileigh)
0F _:_-;-,-.f\_f g ___?_:Z | Scattering
S =3

Bt—— haoy NS
Eon NAY Anti-
/\} Stokes h (Uf StOkeS

Raman Raman

. Scattering  Scattering
Raileigh o-Q(q) o+ Q(q)

N\A .
0 _é N\ % /@“é é Stokes ©; Anti-Stokes

From Sirenko’s ppt 1930



However, the physical momentum of a normal mode with wavevector k is zero:

P:MZCZ"

i(kX,—ot)

,u, = Ae

. —iwt N ikna
= MA(—-iw)e Ze
n=0
] — N uniform translation of the crystal

1 . eika l

=0 sincek=2zm/ Na (#0 ONLY when £=0)

= MA(-iw)e™

no center-of-mass motion of the crystal

Therefore, we call 7k the crystal momentum (of the phonon), or
phonon momentum, in order not to be confused with physical momentum.



