Chap 2 Wave diffraction and the reciprocal lattice

• Braggs’ theory of diffraction (1913)
• Reciprocal lattice
• Laue’s theory of diffraction (June 1912)
• Bragg theory = Laue theory

Later than Laue’s theory, but simpler.

The analysis of diffraction here applies to the diffraction of EM wave, electron, neutron ... etc
Laue thought that X-ray might scatter off crystals in the way that ordinary light scatters off a diffraction grating.

He discussed his idea with colleagues Sommerfeld, Wien and others with the result of encountering a strong disbelief in a significant outcome of any diffraction experiment based upon the regularity of the internal structure of crystals. It was argued that the inevitable temperature motion of the atoms would impair the regularity of the grating to such an extent that no pronounced diffraction maxima could be expected. —Ewald (1962), p. 42

• For example, For NaCl, the thermal fluctuation is expected to be $2 \cdot 10^{-9}$ cm ~ the wavelength of X-ray 10^{-9} cm (Marder, p.43)

• Now we know that thermal fluctuation would only broaden the diffraction peaks, but not destroy them.
Braggs’ view of the diffraction (1913, father and son)

Treat the lattice as a stack of lattice planes

- Specular reflection from crystal planes when
 \[2d\sin\theta = n\lambda \]
 (typically \(10^3 \sim 10^5\) planes)

- Difference from the usual reflection:
 \(\lambda > 2d\), no reflection
 \(\lambda < 2d\), reflection only at certain angles

- Measure \(\lambda, \theta\) → get distance between crystal planes \(d\)

The Bragg derivation is simple but convincing only because it produces the correct result -- Kittel
Single-crystal diffraction

\[2d \sin \theta = n\lambda \]
• Braggs’ theory of diffraction

• **Reciprocal lattice** (for Bravais lattice)

• Laue’s theory of diffraction

• Bragg theory = Laue theory
Reciprocal lattice (倒晶格) in k-space

Def. 1
\[
\tilde{b}_1 \cdot \tilde{a}_1 = 2\pi, \quad \tilde{b}_1 \cdot \tilde{a}_2 = \tilde{b}_1 \cdot \tilde{a}_3 = 0,
\]
\[
\tilde{b}_2 \cdot \tilde{a}_2 = 2\pi, \quad \tilde{b}_2 \cdot \tilde{a}_3 = \tilde{b}_2 \cdot \tilde{a}_1 = 0,
\]
\[
\tilde{b}_3 \cdot \tilde{a}_3 = 2\pi, \quad \tilde{b}_3 \cdot \tilde{a}_1 = \tilde{b}_3 \cdot \tilde{a}_2 = 0.
\]

Def. 2
\[
\tilde{b}_1 = 2\pi \frac{\tilde{a}_2 \times \tilde{a}_3}{\tilde{a}_1 \cdot (\tilde{a}_2 \times \tilde{a}_3)},
\]
\[
\tilde{b}_2 = 2\pi \frac{\tilde{a}_3 \times \tilde{a}_1}{\tilde{a}_1 \cdot (\tilde{a}_2 \times \tilde{a}_3)},
\]
\[
\tilde{b}_3 = 2\pi \frac{\tilde{a}_1 \times \tilde{a}_2}{\tilde{a}_1 \cdot (\tilde{a}_2 \times \tilde{a}_3)}.
\]

- Every Bravais lattice has a reciprocal lattice
- The reciprocal lattice of a reciprocal lattice is the original lattice
- \[
\tilde{b}_1 \cdot (\tilde{b}_2 \times \tilde{b}_3) = \frac{(2\pi)^3}{\tilde{a}_1 \cdot (\tilde{a}_2 \times \tilde{a}_3)} = \frac{(2\pi)^3}{V_{cell}}\]
 \(-\) volume of a unit cell in reciprocal lattice
Example of reciprocal lattice

1-dim

\[b = 2\pi \frac{a}{a^2} \]

2-dim

\[b_1 = 2\pi \frac{a_2 \times n}{a_1 \cdot (a_2 \times n)} \]
\[b_2 = 2\pi \frac{n \times a_1}{a_2 \cdot (n \times a_1)} \]

- Reciprocal lattice has unit \([1/L]\), the same as wave vector \(k\)'s
- When one lattice shrinks, the other expands (but you can’t compare their size since they have different units)
- When we rotate a crystal, both lattices rotate with the same angle
Simple cubic lattice

\[\bar{a}_1 = a\hat{x}, \]
\[\bar{a}_2 = a\hat{y}, \]
\[\bar{a}_3 = a\hat{z}. \]
\[\bar{a}_1 \cdot (\bar{a}_2 \times \bar{a}_3) = a^3 \]

Bragg theory

Reciprocal lattice

atom scattering

crystal scattering

Laue=Bragg

BZ

\[\bar{b}_1 = 2\pi \frac{\bar{a}_2 \times \bar{a}_3}{\bar{a}_1 \cdot (\bar{a}_2 \times \bar{a}_3)} = \frac{2\pi}{a} \hat{x}, \]
\[\bar{b}_2 = 2\pi \frac{\bar{a}_3 \times \bar{a}_1}{\bar{a}_1 \cdot (\bar{a}_2 \times \bar{a}_3)} = \frac{2\pi}{a} \hat{y}, \]
\[\bar{b}_3 = 2\pi \frac{\bar{a}_1 \times \bar{a}_2}{\bar{a}_1 \cdot (\bar{a}_2 \times \bar{a}_3)} = \frac{2\pi}{a} \hat{z}. \]

\[\bar{b}_1 \cdot (\bar{b}_2 \times \bar{b}_3) = \left(\frac{2\pi}{a} \right)^3 \]
FCC lattice

\[\vec{a}_1 = \frac{a}{2}(\hat{x} + \hat{y}), \]
\[\vec{a}_2 = \frac{a}{2}(\hat{y} + \hat{z}), \]
\[\vec{a}_3 = \frac{a}{2}(\hat{z} + \hat{x}). \]

\[\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = \frac{a^3}{4} \]

BCC lattice

\[\vec{b}_1 = 2\pi \frac{\vec{a}_2 \times \vec{a}_3}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{4\pi}{a} \frac{1}{2} (\hat{x} + \hat{y} - \hat{z}), \]
\[\vec{b}_2 = 2\pi \frac{\vec{a}_3 \times \vec{a}_1}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{4\pi}{a} \frac{1}{2} (-\hat{x} + \hat{y} + \hat{z}), \]
\[\vec{b}_3 = 2\pi \frac{\vec{a}_1 \times \vec{a}_2}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)} = \frac{4\pi}{a} \frac{1}{2} (\hat{x} - \hat{y} + \hat{z}). \]

\[\vec{b}_1 \cdot (\vec{b}_2 \times \vec{b}_3) = \frac{1}{2} \left(\frac{4\pi}{a} \right)^3 \]
Two simple properties:

1. \(\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3 \) \((n_1, n_2, n_3 \in \mathbb{Z}) \) ∈ direct lattice
 \(\vec{G} = k_1 \vec{b}_1 + k_2 \vec{b}_2 + k_3 \vec{b}_3 \) \((k_1, k_2, k_3 \in \mathbb{Z}) \) ∈ reciprocal lattice
 \(\Rightarrow \vec{G} \cdot \vec{R} = 2\pi(n_1k_1 + n_2k_2 + n_3k_3) = 2\pi \times \text{integer} \)

 \((\therefore \exp(i\vec{G} \cdot \vec{R}) \text{ is always equal to } 1) \)

2. Conversely, assume \(\vec{G} \cdot \vec{R} = 2\pi \times \text{integer for all } \vec{R} \),
 then \(\vec{G} \) must be a reciprocal lattice vector.

For example, if
\[
\vec{G} \cdot \vec{a}_1 = 2\pi h,
\]
\[
\vec{G} \cdot \vec{a}_2 = 2\pi k,
\]
\[
\vec{G} \cdot \vec{a}_3 = 2\pi l, \quad (h, k, l \in \mathbb{Z})
\]
then \(\vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3 (\equiv \vec{G}_{hkl}) \).
If \(f(\mathbf{r}) \) has lattice translation symmetry, that is, \(f(\mathbf{r}) = f(\mathbf{r} + \mathbf{R}) \) for any lattice vector \(\mathbf{R} \), then it can be expanded as,

\[
f(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} f_{\mathbf{G}},
\]

where \(\mathbf{G} \) is the reciprocal lattice vector.

Pf: Fourier expansion

\[
f(\mathbf{r}) = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} f(\mathbf{k}),
\]

\[
\mathbf{k} = \frac{2\pi}{L} (n_x, n_y, n_z), \quad n_x, n_y, n_z \in \mathbb{Z}
\]

\[
\Rightarrow f(\mathbf{r} + \mathbf{R}) = \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} e^{i\mathbf{k} \cdot \mathbf{R}} f(\mathbf{k}) = f(\mathbf{r})
\]

Orthogonality:

\[
\sum_{\mathbf{k}} a_{\mathbf{k}} e^{i\mathbf{k} \mathbf{x}} = 0
\]

\[
\Rightarrow \sum_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}} (e^{i\mathbf{k} \cdot \mathbf{R}} - 1) f(\mathbf{k}) = 0
\]

\[
\Rightarrow a_{\mathbf{k}} = 0 \quad \text{for } \forall \mathbf{k}
\]

\[
e^{i\mathbf{k} \cdot \mathbf{R}} = 1 \quad \text{for } \forall \mathbf{R}
\]

\[
\mathbf{k} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3
\]

\[
= \mathbf{G}_{hkl} \quad \forall \ h, k, l
\]

The expansion above is **very** general, it applies to

- every Bravais lattice (bcc, fcc, tetragonal, orthorombic...)
- every dimension (1, 2, and 3)

All you need to do is to find out the reciprocal lattice vectors \(\mathbf{G} \).
For example, charge density in a 1-dim crystal

\[\rho(x) = \sum_k e^{ikx} \rho(k), \quad k = n \frac{2\pi}{L}, \quad n \in \mathbb{Z} \]

\[\rho(x + a) = \sum_k e^{ikx} e^{ika} \rho(k) = \rho(x) \]

Therefore, \(e^{ika} = 1 \)

\[\rightarrow \quad k = n \frac{2\pi}{a} \equiv ng \]

\[\rho(x) = \sum_{n=-\infty}^{\infty} e^{ingx} \rho(ng) \]

\[\sum_k a_k e^{ikx} = 0 \]

\[\rightarrow a_k = 0 \quad \text{for } \forall k \]

reciprocal lattice points: ng
Summary

<table>
<thead>
<tr>
<th>Direct lattice</th>
<th>Reciprocal lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic (a)</td>
<td>cubic ((2\pi/a))</td>
</tr>
<tr>
<td>fcc (a)</td>
<td>bcc ((4\pi/a))</td>
</tr>
<tr>
<td>bcc (a)</td>
<td>fcc ((4\pi/a))</td>
</tr>
<tr>
<td>hexagonal (a,c)</td>
<td>hexagonal ((4\pi/\sqrt{3}a,2\pi/c)) and rotated by 30 degrees</td>
</tr>
</tbody>
</table>

(See Prob.3)

The reciprocal lattice is useful in

- Fourier decomposition of a lattice-periodic function
- von Laue’s diffraction condition \(\mathbf{k}' = \mathbf{k} + \mathbf{G} \) (below)
• Bragg's theory of diffraction
• Reciprocal lattice
• Laue's theory of diffraction
• Bragg theory = Laue theory

Bottom-up approach:
The analysis below concerns the scattering of:
1. 1 atom, 2 atoms
2. \(N\) atoms (Bravais lattice in 1D)
3. Bravais lattice in 3D
4. Bravais lattice with basis in 3D

Note: Kittel uses a top-down approach, starting from the scattering of a whole crystal.
Scattering from an array of atoms (Laue, 1912)

1. First, a wave scattering off an atom at the origin:

scattered wave \(\psi(\vec{r}) \sim f_a(\theta) \frac{e^{i\vec{k}\cdot\vec{r}}}{r} \) at large \(r \) (spherical wave)

- Atomic form factor: Fourier transform of atom charge distribution \(n(\rho) \)

\[
f_a(\theta) = \int dV e^{-i\Delta\vec{k}\cdot\vec{\rho}} n(\vec{\rho}), \quad \Delta\vec{k} \equiv \vec{k}' - \vec{k}
\]
Atomic form factor: \[f_a(\theta) = \int dV e^{-i\mathbf{q} \cdot \mathbf{r}} n(\mathbf{r}) \] (See Prob.9)
• Scattering off an atom not at the origin

scattered wave \(\psi(\vec{r}) \propto f_a \frac{e^{ik|\vec{r}-\vec{R}|}}{|\vec{r}-\vec{R}|} e^{i\vec{k} \cdot \vec{R}} \)

\[|\vec{r}-\vec{R}| \approx r - \hat{r} \cdot \vec{R} \]

\[\frac{1}{|\vec{r}-\vec{R}|} \approx \frac{1}{r} + O\left(r^{-2}\right) \]

\(k\hat{r} = \vec{k} \)

\[\therefore \psi(\vec{r}) \propto f_a \frac{e^{ikr}}{r} e^{-i\Delta k \cdot \vec{R}} \]

• Scattering off two atoms \((r >> R_1, R_2)\)

\[\psi(\vec{r}) \propto f_a \frac{e^{ikr}}{r} \left(e^{-i\Delta k \cdot \vec{R}_1} + e^{-i\Delta k \cdot \vec{R}_2} \right) \]
2. Scattering off N-atoms: 1D lattice

\[\psi \approx e^{-i\Delta k \cdot 0} + e^{-i\Delta k \cdot a} + e^{-i\Delta k \cdot 2a} + e^{-i\Delta k \cdot 3a} + e^{-i\Delta k \cdot 4a} \]

\[\psi \approx \sum_{n=0}^{N-1} e^{-i\Delta k \cdot n\vec{a}} \]

\[= \frac{1 - \exp(-iN\Delta \vec{k} \cdot \vec{a})}{1 - \exp(-i\Delta \vec{k} \cdot \vec{a})} \xrightarrow{N \gg 1} \sum_h \delta_{\Delta \vec{k} \cdot \vec{a},2\pi h} \]

See Prob. 7

For large \(N \), \(\psi \) is nonzero only when

\[\Delta \vec{k} \cdot \vec{a} = 2\pi h \quad (h \text{ is an integer}) \]

→ Constructive interference
3. N-atom scattering: 3D Bravais lattice

For a Bravais lattice,

$$\psi(\vec{r}) \propto f_a \sum_{\vec{R}} e^{-i\Delta \vec{k} \cdot \vec{R}}, \quad \vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3.$$

The lattice-sum can be separated,

$$\sum_{\vec{R}} e^{-i\Delta \vec{k} \cdot \vec{R}} = \left(\sum_{n_1} e^{-i\Delta \vec{k} \cdot n_1 \vec{a}_1} \right) \left(\sum_{n_2} e^{-i\Delta \vec{k} \cdot n_2 \vec{a}_2} \right) \left(\sum_{n_3} e^{-i\Delta \vec{k} \cdot n_3 \vec{a}_3} \right)$$

\(\neq 0 \) only when

\[\Delta \vec{k} \cdot \vec{a}_1 = 2\pi h, \]
\[\Delta \vec{k} \cdot \vec{a}_2 = 2\pi k, \]
\[\Delta \vec{k} \cdot \vec{a}_3 = 2\pi l. \]

i.e., \(\sum_{\vec{R}} e^{-i\Delta \vec{k} \cdot \vec{R}} = N \sum_{hkl} \delta_{\Delta \vec{k} \cdot \vec{a}_1, 2\pi h} \delta_{\Delta \vec{k} \cdot \vec{a}_2, 2\pi k} \delta_{\Delta \vec{k} \cdot \vec{a}_3, 2\pi l} = N \sum_{\vec{G}_{hkl}} \delta_{\Delta \vec{k}, \vec{G}_{hkl}} \]

Laue’s diffraction condition

Laue=Bragg

\(\Delta \vec{k} \) forms a reciprocal lattice

Number of atoms in the crystal
4. Previous calculation is for a Bravais lattice, now we calculate the scattering from a crystal with basis.

\(\mathbf{d}_j \): location of the \(j \)-th atom in a unit cell

Eg., honeycomb lattice

\[
\vec{d}_1 = \vec{0}, \quad \vec{d}_2 = a\hat{x}
\]

\[\psi(\mathbf{r}) \propto \sum_{\mathbf{R}} \left(\sum_{j=1}^{p} f_{aj} e^{-i\mathbf{k} \cdot (\mathbf{R} + \mathbf{d}_j)} \right) = \left(\sum_{\mathbf{R}} e^{-i\mathbf{k} \cdot \mathbf{R}} \right) \left(\sum_{j=1}^{p} f_{aj} e^{-i\mathbf{k} \cdot \mathbf{d}_j} \right) = N \sum_{\mathbf{G}_{hkl}} \delta_{\mathbf{G}_{hkl}, \mathbf{G}_{hkl}} \cdot S(\mathbf{k}) \]

Structure factor (of the basis)

\[S(h, k, l) \equiv \sum_{j=1}^{p} f_{aj} e^{-i\mathbf{G}_{hkl} \cdot \mathbf{d}_j} \]
Example: Diffraction condition of fcc lattice

Method 1 Fcc is a Bravais lattice.

The Laue condition is determined by its reciprocal lattice, which is a bcc lattice.

\[\psi \sim \sum_{R} e^{-i\mathbf{\Delta k} \cdot \mathbf{R}} = N \sum_{\mathbf{G}_{hkl}} \delta_{\mathbf{\Delta k}, \mathbf{\tilde{G}_{hkl}}} \]

Method 2 Fcc is a simple cubic lattice with 4 point basis

The Laue condition is determined by its reciprocal lattice, which is a sc lattice, as well as the structure factor of 4-atom basis.

\[\psi \sim N \sum_{\mathbf{G}_{hkl}} \delta_{\mathbf{\Delta k}, \mathbf{\tilde{G}_{hkl}}} \cdot S(\mathbf{\Delta k}) \]
Method 2 (cont'd)

\[\psi \sim N \sum_{G_{hkl}} \delta_{\Delta \vec{k}, \vec{G}_{hkl}} \cdot S(\Delta \vec{k}) \]

\[\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3 \quad \leftarrow \text{A sc lattice} \]

The structure factor for the 4-point basis

\[S(h, k, l) = f_a \left[1 + e^{-i\pi(h+k)} + e^{-i\pi(k+l)} + e^{-i\pi(l+h)} \right] \]

\[= 4f_a \text{ when } h, k, l \text{ are all odd or all even} \]
\[= 0 \text{ otherwise} \]

Destructive interference

Eliminate the points in the reciprocal lattice with \(S=0 \).

The result is a bcc lattice, agrees with Method 1.
Atomic form factor and intensity of diffraction

```
KCl

f_K \sim f_{Cl}
```

cubic lattice with
lattice const. a/2

```
KBr

f_K \neq f_{Br}
```

fcc lattice
h,k,l all even or all odd

SC with 2-atom basis
Find out the structure factor of the honeycomb structure, then draw its reciprocal structure. Different points in the reciprocal structure may have different structure factors. Draw a larger dot if the associated $|S|^2$ is larger.

Summary

$h^2 + l^2 + k^2$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
sc																										
bcc																										
fcc																										
diamond cubic																										

Fig. 3.4 Permitted diffracted beams in cubic systems are characterized by the values of $h^2 + k^2 + l^2$. The figure shows how the addition of a basis to the simple cubic primitive cell reduces the number of allowed beams, increasingly the more atoms in the basis. Note the regular sequence of each pattern. The correct angular separations are not reproduced in this diagram.
Laue’s diffraction condition: $k' = k + \mathbf{G}_{hkl}$

• Given an incident k, want to find a k' that satisfies this condition (under the constraint $|k'| = |k|$)

• One problem: there are infinitely many \mathbf{G}_{hkl}'s.

• It’s convenient to solve it graphically using the Ewald construction.
When you rotate a crystal, its reciprocal lattice rotates the same amount as well.
• Braggs’ theory of diffraction
• Reciprocal lattice
• Laue’s theory of diffraction
• Bragg theory = Laue theory
Geometrical relation between \mathbf{G}_{hkl} vector and (hkl) planes

(h, k, l) planes $\perp \mathbf{G}_{hkl} \equiv h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$

(Prob.2)

Pf:

$(h, k, l) = m\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)$

$$
\begin{align*}
\mathbf{v}_1 &= \frac{m}{h} \mathbf{a}_1 - \frac{m}{l} \mathbf{a}_3 \\
\mathbf{v}_2 &= \frac{m}{k} \mathbf{a}_2 - \frac{m}{l} \mathbf{a}_3 \\
\end{align*}
$$

$$
\begin{align*}
\mathbf{G}_{hkl} \cdot \mathbf{v}_1 &= 0 \\
\mathbf{G}_{hkl} \cdot \mathbf{v}_2 &= 0 \\
\end{align*}
$$

$\therefore \quad \mathbf{G}_{hkl} \perp (h, k, l)$-plane

Cf:

$[h, k, l] = h\mathbf{a}_1 + k\mathbf{a}_2 + l\mathbf{a}_3$

$\mathbf{G}_{hkl} = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3$
Inter-plane distance

\[\vec{G}_{hkl} \cdot \vec{R} = 2\pi n \quad (n \text{ could be any integer}) \]

\[\Rightarrow \quad \hat{G}_{hkl} \cdot \vec{R} = 2\pi n / |\vec{G}_{hkl}| \]

\[\therefore \text{ inter-plane distance } d_{hkl} = 2\pi / |\vec{G}_{hkl}| \]

For a cubic lattice

\[\vec{G}_{hkl} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3 \]

\[= \frac{2\pi}{a} (h\hat{x} + k\hat{y} + l\hat{z}) \]

\[\therefore d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \] (Prob.1)

• In general, planes with higher index have smaller inter-plane distance
Laue condition = Bragg condition

• From the Laue condition, we have

\[\vec{k} \cdot \vec{G}_{hkl} = -\frac{G_{hkl}}{2} \]

• Given \(k \) and \(G_{hkl} \), we can find the diffracted wave vector \(k' \)

• It’s easy to see that \(\theta = \theta' \) because \(|k| = |k'|\).

By using
\[2k \sin \theta = G_{hkl} = \frac{2\pi}{d_{hkl}}(\times n) \]

and
\[k = \frac{2\pi}{\lambda}, \]

\[\Rightarrow 2d_{hkl} \sin \theta = n\lambda. \]

Bragg diffraction condition
Another view of the Laue condition

\[\vec{k} \cdot \hat{G}_{hkl} = \pm \frac{G_{hkl}}{2} \]

(If \(G_{hkl} \) exists, then \(-G_{hkl}\) also exists)

\[\therefore \text{The } \vec{k} \text{ vector that points to the plane bi-secting a } G_{hkl} \text{ vector will be diffracted.} \]
First Brillouin zone (later, there will be higher BZs)

Def: It is the Wigner-Seitz cell of the reciprocal lattice
Bragg theory
Reciprocal lattice
atom scattering
crystal scattering
Laue=Bragg

2-dim

Triangle lattice

direct lattice

reciprocal lattice

BZ
The first BZ of fcc lattice (its reciprocal lattice is bcc lattice)

\[4\pi/a \]

The first BZ of bcc lattice (its reciprocal lattice is fcc lattice)

\[4\pi/a \]