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Energy bands (Nearly-free electron model)

• Bragg reflection and energy gap

• Bloch theorem

• The central equation

• Empty-lattice approximation

• For history on band theory, see 半導體的故事, by 李雅明, chap 4

NFE model is good for Na, K, Al… etc, 
in which the lattice potential is only a 
small perturbation to the electron sea.



Bloch recalled,

The main problem was to explain how the electrons could sneak by 

all the ions in a metal so as to avoid a mean free path of the order of 

atomic distances. Such a distance was much too short to explain the 

observed resistances, which even demanded that the mean free path 

become longer and longer with decreasing temperature.

By straight Fourier analysis I found to my delight that the wave differed 

from the plane wave of free electrons only by a periodic modulation. 

This was so simple that I didn't think it could be much of a discovery, 

but when I showed it to Heisenberg he said right away: "That's it!"

Hoddeson L – Out of the Crystal Maze, p.107
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• Density distribution of the two standing waves

Nearly-free electron model

Free electron plane wave

• Consider 1-dim case, when we turn on a lattice potential with period a, 
the electron wave will be Bragg reflected when k=±π/a, which forms 
two different types of standing wave. (Peierls, 1930)
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• These 2 standing waves have different electrostatic energies. 
This is the origin of the energy gap.

( )2 2

0

2 2

0

( )( ) | ( ) | | ( ) |

2 2cos sin cos

a

g

a

E dxV x e x x

e x x xV dx eV
a a a a

ψ ψ

π π π

− += − −

⎛ ⎞⎛ ⎞= − − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫

∫

• Lattice effect on free electron’s energy dispersion

Electron’s group velocity is zero near the boundary of the 1st BZ 
(because of the standing wave).

Q: where are the energy gaps when U(x)=U1 cos(2πx/a)+U2 cos(4πx/a)?

If potential V(x)=Vcos(2πx/a), then

ψ+

ψ−

Note: Kittel use   
potential energy U (=eV)
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• Electron energy dispersion calculated from the Schrodinger eq.

Energy bands 
(Kittel, p.168)

A solvable model in 1-dim: The Kronig-Penny model (1930)
(not a bad model for superlattice)



The electron states in a periodic potential is of the form

, where uk(r+R)= uk(r) is a cell-periodic function.

Bloch theorem (1928)

• A simple proof for 1-dim:

Consider periodic BC, 
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|Ψ(x)|2 is the same in each unit cell. Ψ(x+a)=CΨ(x)

Similar proof can be extended to higher dimensions.



uk(x) depends on the form of the periodic lattice potential.

← Effective Hamiltonian for uk(r)
22

within one unit cell

where

           ( )

                   ( )

( )  

2

   k k

ik r i

k

k rH k

H k u u

k U r
m i

e He

ε
− ⋅ ⋅

=

∇⎛ ⎞= + +⎜

≡

⎟
⎝ ⎠

G G

G G G

G GG�

G�

G= G

1023 times less effort than 
the original Schrodinger eq.
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• Schrodinger eq for ψ:

• Schrodinger eq for u:

important

Lattice 
potential
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Periodic B.C.
(3-dim case)

Therefore, there are N k-points in a BZ (a unit cell in reciprocal lattice), 

where N = total number of primitive unit cells in the crystal.
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Countings in r-space and k-space

r-space

• N unit cells 

(N lattice points x 1 atom/point)

• If each atom contributes q
conduction electrons, then Nq
electrons in total.

k-space

1st BZ:

• Infinite reciprocal lattice points

• N k-points in 1st BZ 

• N k-points in an energy band

a crystal with PBC:

N points here

N points here

Q: what if there are p atoms per lattice point?



• If even number of electrons per primitive cell, then there are 2 

possibilities: (a) no energy overlap or (b) energy overlap.

E.g., alkali earth elements can be conductor or insulator. 

• If a solid has odd number of valence electron per primitive 

cell, then the energy band is half-filled (conductor).             

For example, all alkali metals are conductors.

Difference between conductor and insulator (Wilson, 1931)

• There are N k-points in an energy band, each k-point can be 

occupied by two electrons (spin up and down). 

∴ each energy band has 2N “seats” for electrons.

• If a solid has even number of valence electron per primitive cell, 

then the energy band might be filled (if filled, then insulator). 
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How do we determine uk(r) from lattice potential U(r)? 

Schrodinger equation

Schrod. eq. in k-space 
aka. the central eq.

Fourier transform 

1. the lattice potential

2. the wave function

G=2πn/a

k=2πn/L
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Keypoint: go to k-space to avoid derivatives and simplify the calculation

Kittel
uses λk



Matrix form of the central eq. (in 1D)

• For a given k, there are many eigen-values εnk, with eigen-vectors Cnk.
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for a 
particular k

• The eigenvectors {Cnk(G), ∀G} determines the Bloch states. 

• The eigenvalues εn(k) determines the energy band.

U(x) = 2U cos2πx/a 

= U exp(2πix/a)+U exp(-2πix/a) (Ug=U-g=U)
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Example:



ε1k

ε2k

ε3k

1st BZ

• when U(x)≠0, for a particular k, unk is a linear combination 

of plane waves, with coefficients Cnk : ( ) ( ) iGx
nk nk

G
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• What are the eigen-energies and eigen-states when U=0?
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• Bloch energy εn,k+G = εnk (∴ info in the 1st BZ is enough)
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• If k ～ 0, then the most significant component of ψ1k(x) is

exp[ikx] (little superposition from other plane waves).

• If k ～ g/2, then the most significant components of ψ1k(x) and
ψ2k(x) are exp[i(k-g)x] and exp[ikx], others can be neglected.

• The Bloch state 

is a superposition of … exp[i(k-g)x], exp[ikx], exp[i(k+g)x] …

( )( ) ( ) i k G x
nk nk

G
x C G eψ −=∑

cutoff for
k～g/2!

Approximation of the central equation

Truncation:



Energy levels near zone boundary k ～ g/2

• Cut-off form of the central eq. 0
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• Energy eigenvalues
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Kittel, p.225

Sometimes it is convenient to 
repeat the domains of k
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Fig from Dr. Suzukis’ note (SUNY@Albany)
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3 ways to plot the energy bands:



Nearly-free-electron model in 2-dim (energy bands)

• 0th order approx.: empty lattice (U(r)=0)

• 1st order approx.: energy gap opened by Bragg reflection
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“Empty lattice” in 2D

2π/a

Γ X

M

• How to fold a parabolic “surface” back to the first BZ?

• Free electron in vacuum:
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Folded parabola along ΓX (reduced zone scheme)

• Usually we only plot 
the major directions, for 
2D square lattice, they 
are ΓX, XM, MΓ

• The folded parabola 
along ΓM is different

Γ X

M

2π/a

• In reality, there are  
energy gaps at BZ 
boundaries because of 
the Bragg reflection



Empty Lattice in 3D

Simple cubic lattice
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Energy bands for empty FCC lattice 
along the Γ-X direction.

Empty FCC lattice

1st Brillouin zone:



The energy bands for  
“empty” FCC lattice

Actual band structure for 
copper (FCC, 3d104s1)

Comparison with real band structure

From Dr. J. Yates’s ppt

d bands



Tight binding model 
(details in chap 9)

• Alkali metal 

• noble metal

• Covalent solid

• d-electrons in 
transition metals

Origin of energy bands - an opposite view


