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NFE model is good for Na, K, Al... etc,
in which the lattice potential is only a
small perturbation to the electron sea.

Energy bands (Nearly-free electron model)
» Bragg reflection and energy gap

 Bloch theorem

* The central equation

« Empty-lattice approximation

 For history on band theory, see % gﬁ;ﬁgpfjﬁ'@] 1, by % 754, chap 4



Bloch recalled,

The main problem was to explain how the electrons could sneak by
all the ions in a metal so as to avoid a mean free path of the order of
atomic distances. Such a distance was much too short to explain the
observed resistances, which even demanded that the mean free path

become longer and longer with decreasing temperature.

By straight Fourier analysis | found to my delight that the wave differed
from the plane wave of free electrons only by a periodic modulation.
This was so simple that | didn't think it could be much of a discovery,

but when | showed it to Heisenberg he said right away: "That's it!"

Hoddeson L — Out of the Crystal Maze, p.107



Nearly-free electron model
Free electron plane wave
— ik-F 2
v (F)=e“", K, :nxTﬂ .. etc

» Consider 1-dim case, when we turn on a lattice potential with period a,
the electron wave will be Bragg reflected when k=t 7 /a, which forms
two different types of standing wave. (Peierls, 1930)
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 Density distribution of the two standing waves

p, probability density
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* These 2 standing waves have different electrostatic energies.
This is the origin of the energy gap.

If potential V(x)=Vcos(2 7 x/a), then Note: Kittel use

potential energy U (=eV)
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o Lattice effect on free electron’s energy dispersion
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Electron’s group velocity is zero near the boundary of the 1st BZ
(because of the standing wave).

Q: where are the energy gaps when U(x)=U, cos(2 = x/a)+U, cos(4 7 x/a)?



A solvable model in 1-dim: The Kronig-Penny model (1930)
(not a bad model for superlattice)
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» Electron energy dispersion calculated from the Schrodinger eq.
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Energy bands
; (Kittel, p.168)
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Bloch theorem (1928)

The electron states in a periodic potential is of the form

— ik-F _
v (M) =e""U:(N) where u,(r+R)= u,(r) is a cell-periodic function.

A simple proof for 1-dim:
| 7(x)|? is the same in each unit cell. == Y(x+a)=C ¥(x)
Consider periodic BC, w(x+Na)=C"yw(x) =y (X)
- C :exp(Zﬂi%j, S :0,1,2---,(N —1)

: .S S
write X)=exp| 2zi—X |u, (X), 27— =K
(%) p(nNajm -

then u, (x+a)=u,(x)

Similar proof can be extended to higher dimensions.




 Schrodinger eq for ¢ : e

p2 potential
HWIZZEIZWIZ’ H =%+U(r)

i (F)=e""ug (F)
u.(x) depends on the form of the periodic lattice potential.

1023 times less effort than

* Schrodinger eq for u: the original Schrodinger eq.

H (k)uq = ¢.U.  within one unit cell

where H (k) e kT HeikT < Effective Hamiltonian for u,(r)



Allowed values of k are determined by the B.C.

Peripdic B.C. t//E(f+ N&)=w.(r), i=1,2,3
(3-dim case)
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e Ak= ( \7;) as in the free-electron case.

Therefore, there are N k-points in a BZ (a unit cell in reciprocal lattice),

where N = total number of primitive unit cells in the crystal.



Countings in r-space and k-space

r-space

a crystal with PBC.:

* N unit cells
(N lattice points x 1 atom/point)

* If each atom contributes g

k-space

N points here

N points here

'
* Infinite reciprocal lattice points
* N k-points in 1st BZ

* N k-points in an energy band

conduction electrons, then Nq
electrons in total.

Q: what if there are p atoms per lattice point?



Difference between conductor and insulator (Wilson, 1931)

» There are N k-points in an energy band, each k-point can be

occupied by two electrons (spin up and down).

.". each energy band has 2N “seats” for electrons. conductor
s+ E
* If a solid has odd number of valence electron per primitive /\

cell, then the energy band is half-filled (conductor).

For example, all alkali metals are conductors.

« If a solid has even number of valence electron per primitive cell,
then the energy band might be filled (if filled, then insulator).

E.g., alkali earth elements can be conductor or insulator.

insulator conductor
A E A E
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I. FUNCTION WITH LATTICE TRANSLATION
SYMMETRY

In Chap 2, we have lattice systems with discrete trans-
lation symmetry. Physical quantity such as the distri-
bution of charge density, n(r), is invariant under lattice
translation,

n(r +R) = n(r), (1)

where R is any given lattice vector. Such a function can
be Fourier decomposed as

n(r) = Y neeiS, 2)

G

where G is the reciprocal lattice vector. For a simple
cubic lattice with lattice constant a, G = Qf(nx, Ty, 1z ),
where n, , . are integers.

The set of exponentials. {_eiG""}, satisfy the orthogonal
relation,

(G'G) = f re7iC T CT = yig ar. (3)
cell

The integration is over a unit cell with volume v. As
a result, this set of exponentials can be considered as a
set of independent basis vectors, and the function n(r)
can be considered as a vector in an infinite-dimensional
vector space (the Hilbert space).



Applying the orthogonal relation to Eq. (2), we can
evaluate the coefficient of expansion,

ng = 1/ d*ro(r)e G, (4)
U Jecell

Obviously, if n(r) = 0, then ng = 0 for ¥V G. This also
implies that, if

Z gGEiG-r _ Z hGEéG'r, (5)
G G

then
ga = hg for ¥V G. (6)

To prove it, one simply put the two summations on the
same side of the equation and identify g — ha as nea.
Eq. (6) merely reflects the fact that the basis vectors,
{e?ST) are linearly independent.



How do we determine u,(r) from lattice potential U(r)?

Schrodinger equation

—)+U(F) u,(F) = &.u_(F)

Keypoint: go to k-space to avoid derivatives and simplify the calculation

Fourier transform

1. the lattice potential

2. the wave function

Schrod. eq. in k-space
aka. the central eq.

= iG-F
U(r):ZUGe G=2 7 nla

u (F)=>C.(G)e ™" |k=2 7 niL
G

(&7 6 =& )C(G)+ X Uy Ci(G) =0

o h°k?
5=
Kittel



Matrix form of the central eq. (in 1D)

gl?+29 — & Ug U29 U3g
U, glf+g -& U, U,,
U_,, U, &-& U,
U, U, U, &, &
U, U, U, U,

G=ng (g=27/a)

49

3

«

C C C

29

U

-9

0
Ey_og ~ Gk

C, (—29)
Cy(-9)
C.(0)
C.(9)
C.(29)

:o¢

for a
particular k

* For a given k, there are many eigen-values &, with eigen-vectors C_,.

» The eigenvalues ¢ (k) determines the energy band.

 The eigenvectors {C_,(G), VG} determines the Bloch states.

Example: U(x) = 2U cos2 7 x/a

= U exp(2 7 ix/a)+U exp(-2 r ixla) (Uy=U_4=U)

gf+zg - & U 0 0
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0 U g — &, U
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* What are the eigen-energies and eigen-states when U=07?

U(x)=0 €kt c(g=1 cCc(=1 cC(g)=1

N
v

-29 -g 0 “k g 24 Kk
1t BZ

« when U(x)#0, for a particular k, u,, is a linear combination

of plane waves, with coefficients C_ : u,, (X) = chk (G)e ™
G

* From the central eq., one can seethat C, . (G+G')=C,(G)

unk (X) - Z an (G)e_iGX

= Uy (X) =7, (x) v, (F+R)=e*Fy (F);

l//n,k+G (X) = Wnk (X) Wn,IZJrG (r) = Wn,g (r)

* Bloch energy &, .c = &y (.. infoin the 15t BZ is enough)



Approximation of the central equation

« The Bloch state y,(X) =Y C, (G)e'“
G

IS a superposition of ... exp[i(k-g)x], exp[ikx], exp[i(k+g)x] ...
e If kK ~ 0, then the most significant component of ¢ . (X) is

exp[ikx] (little superposition from other plane waves).

e If K ~ g/2, then the most significant components of ¢ ,,(x) and
¢ 5 (x) are expl[i(k-g)x] and exp[ikx], others can be neglected.

Truncation:
Erog—& U 0 0 0 )(C.(-20)
U Erg—& U 0 0 C,(-9)
0 U £ —&, U 0 C.(0) [|=0 cutoff for
0 0 U E_q — & U C,(9) k~g/2!
0

0 0 U g . —& )\ C,(20)



Energy levels near zone boundary k ~ g/2

 Cut-off form of the central eq. (88 —& U j( C(k) j— 0

U gf_g —-& \C(k—0Q)
* Energy eigenvalues * Energy eigenstates
1.6 o 1 \/ o 0 )\? 2 . .
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Kittel, p.225

3 ways to plot the energy bands:

Extended zone
scheme

(k' e1st BZ) / F
Ehk —> & i | =
(k =K'+ G) 1 Reduced zone

1 scheme

Sometimes it is convenient to
repeat the domains of k

-3n/a -2n/a -m/a 0 m/a 2m/a 3n/a

Fig from Dr. Suzukis’ note (SUNY @Albany)



Nearly-free-electron model in 2-dim (energy bands)
 Oth order approx.: empty lattice (U(r)=0)

 1st order approx.: energy gap opened by Bragg reflection

K
Laue condition K-G= G /
2

—> Bragg reflection whenever k hits the BZ boundary




“Empty lattice” in 2D

2D square lattice’s reciprocal lattice

A

e Free electron in vacuum:

* Free electron in empty lattice:

n(k'+G)
Sy =€ =
2m
k=k'+G
k' 1" BZ

_______________________________

* How to fold a parabolic “surface” back to the first BZ?

v



Folded parabola along I" X (reduced zone scheme)

A 4

* In reality, there are
energy gaps at BZ
boundaries because of
the Bragg reflection

» The folded parabola
along I' M is different

M

I X

» Usually we only plot
the major directions, for
2D square lattice, they
are I' X, XM, MT°



Empty Lattice in 3D

Simple cubic lattice
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Empty FCC lattice

1st Brillouin zone:
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Energy bands for empty FCC lattice
along the I"-X direction.
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Comparison with real band structure

The energy bands for
“empty” FCC lattice
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Actual band structure for
copper (FCC, 3d104st)

Electrons per unit cell

From Dr. J. Yates'’s ppt




TS
Origin of energy bands - an opposite view SHI =
— . o -5 3s
Tight binding model \V/ Y
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