

NFE model is good for Na, K, Al... etc, in which the lattice potential is only a small perturbation to the electron sea.

Energy bands (Nearly-free electron model)

- Bragg reflection and energy gap
- Bloch theorem
- The central equation
- Empty-lattice approximation

• For history on band theory, see 半導體的故事, by 李雅明, chap 4

Bloch recalled,

The main problem was to explain how the electrons could sneak by all the ions in a metal so as to avoid a mean free path of the order of atomic distances. Such a distance was much too short to explain the observed resistances, which even demanded that the mean free path become longer and longer with decreasing temperature.

By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation. This was so simple that I didn't think it could be much of a discovery, but when I showed it to Heisenberg he said right away: "That's it!"

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$$

Hoddeson L – Out of the Crystal Maze, p.107

Nearly-free electron model

Free electron plane wave

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}, \quad k_x = n_x \frac{2\pi}{L} \dots \text{ etc}$$

• Consider 1-dim case, when we turn on a lattice potential with period *a*, the electron wave will be Bragg reflected when $k=\pm \pi/a$, which forms two different types of standing wave. (Peierls, 1930)

Density distribution of the two standing waves

• These 2 standing waves have different electrostatic energies. This is the origin of the energy gap.

If potential V(x)=Vcos(2 π x/a), then

а

Note: Kittel use potential energy U (=eV)

$$E_{g} = \int_{0}^{a} dx V(x)(-e) \left(|\psi_{-}(x)|^{2} - |\psi_{+}(x)|^{2} \right)$$
$$= -\frac{2e}{a} V \int_{0}^{a} dx \cos \left(\frac{2\pi x}{a} \right) \left(\sin^{2} \frac{\pi x}{a} - \cos^{2} \frac{\pi x}{a} \right) = eV$$

• Lattice effect on free electron's energy dispersion

Electron's group velocity is zero near the boundary of the 1st BZ (because of the standing wave).

Q: where are the energy gaps when $U(x)=U_1 \cos(2 \pi x/a)+U_2 \cos(4 \pi x/a)$?

A solvable model in 1-dim: The Kronig-Penny model (1930) (not a bad model for superlattice)

• Electron energy dispersion calculated from the Schrodinger eq.

Bloch theorem (1928)

The electron states in a periodic potential is of the form $\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$, where $u_{\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{\mathbf{k}}(\mathbf{r})$ is a cell-periodic function.

• A simple proof for 1-dim:

 $|\Psi(x)|^2$ is the same in each unit cell. $\longrightarrow \qquad \Psi(x+a)=C \Psi(x)$

Consider periodic BC, $\psi(x + Na) = C^N \psi(x) = \psi(x)$

$$\rightarrow C = \exp\left(2\pi i \frac{s}{N}\right), \quad s = 0, 1, 2 \cdots, (N-1)$$

write $\psi_k(x) = \exp\left(2\pi i \frac{s}{Na}x\right)u_k(x), \quad 2\pi \frac{s}{Na} = k$
then $u_k(x+a) = u_k(x)$

Similar proof can be extended to higher dimensions.

• Schrodinger eq for
$$\phi$$
:
 $H\psi_{\vec{k}} = \varepsilon_{\vec{k}}\psi_{\vec{k}}, \qquad H = \frac{p^2}{2m} + U(\vec{r})$
Lattice potential
 $\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u_{\vec{k}}(\vec{r})$

 $u_k(x)$ depends on the form of the periodic lattice potential.

• Schrodinger eq for U:

10²³ times less effort than the original Schrodinger eq.

 $\tilde{H}(\vec{k})u_{\vec{k}} = \varepsilon_{\vec{k}}u_{\vec{k}}$ within one unit cell

where $\tilde{H}(\vec{k}) \equiv e^{-i\vec{k}\cdot\vec{r}} H e^{i\vec{k}\cdot\vec{r}}$ \leftarrow Effective Hamiltonian for u_k(r)

$$=\frac{\hbar^2}{2m}\left(\frac{\nabla}{i}+\vec{k}\right)^2+U(\vec{r})$$

Allowed values of k are determined by the B.C.

Periodic B.C. $\psi_{\vec{i}}(\vec{r}+N_i\vec{a}_i) = \psi_{\vec{i}}(\vec{r}), \quad i=1,2,3$ (3-dim case) $\rightarrow e^{i\vec{k}\cdot N_i\vec{a}_i} = 1, \forall i$ N₃ $\rightarrow \vec{k} \cdot N_i \vec{a}_i = 2\pi m_i, m_i \in \mathbb{Z}, \forall i$ $\rightarrow \vec{k} = \frac{m_1}{N_1}\vec{b}_1 + \frac{m_2}{N_2}\vec{b}_2 + \frac{m_3}{N_3}\vec{b}_3$ $\vec{1}$ $(\vec{1}$ $\vec{1}$) 1

N₁

$$\Delta^{3}\vec{k} = \frac{b_{1}}{N_{1}} \cdot \left(\frac{b_{2}}{N_{2}} \times \frac{b_{3}}{N_{3}}\right) = \frac{1}{N}\vec{b}_{1} \cdot (\vec{b}_{2} \times \vec{b}_{3})$$

$$N = N_{1}N_{2}N_{3}$$

•
$$\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3) = v = \frac{V}{N},$$

 $\vec{b}_1 \cdot (\vec{b}_1 \times \vec{b}_2) = (2\pi)^3$

•
$$b_1 \cdot (b_2 \times b_3) = \frac{(2N)}{V}$$
,

• $\Delta^3 k = \frac{(2\pi)^3}{V}$, as in the free-electron case.

Therefore, there are *N*k-points in a BZ (a unit cell in reciprocal lattice),

where N = total number of primitive unit cells in the crystal.

Countings in r-space and k-space

• N unit cells

(N lattice points x 1 atom/point)

• If each atom contributes q conduction electrons, then Nq electrons in total.

- Infinite reciprocal lattice points
- N k-points in 1st BZ
- N k-points in an energy band

Q: what if there are p atoms per lattice point?

Difference between conductor and insulator (Wilson, 1931)

- There are N k-points in an energy band, each k-point can be occupied by two electrons (spin up and down).
- ... each energy band has 2N "seats" for electrons.
- If a solid has odd number of valence electron per primitive cell, then the energy band is half-filled (conductor).
 For example, all alkali metals are conductors.

- If a solid has even number of valence electron per primitive cell, then the energy band might be filled (if filled, then insulator).
- E.g., alkali earth elements can be conductor or insulator.

I. FUNCTION WITH LATTICE TRANSLATION SYMMETRY

In Chap 2, we have lattice systems with discrete translation symmetry. Physical quantity such as the distribution of charge density, $n(\mathbf{r})$, is invariant under lattice translation,

$$\underline{n(\mathbf{r} + \mathbf{R})} = n(\mathbf{r}),\tag{1}$$

where \mathbf{R} is any given lattice vector. Such a function can be Fourier decomposed as

$$n(\mathbf{r}) = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}},\tag{2}$$

where G is the reciprocal lattice vector. For a simple cubic lattice with lattice constant a, $\mathbf{G} = \frac{2\pi}{a}(n_x, n_y, n_z)$, where $n_{x,y,z}$ are integers.

The set of exponentials, $\{e^{i\mathbf{G}\cdot\mathbf{r}}\}$, satisfy the orthogonal relation,

$$\langle \mathbf{G}' | \mathbf{G} \rangle \equiv \int_{\text{cell}} d^3 r e^{-i\mathbf{G}' \cdot \mathbf{r}} e^{i\mathbf{G} \cdot \mathbf{r}} = v \delta_{\mathbf{G},\mathbf{G}'}.$$
 (3)

The integration is over a unit cell with volume v. As a result, this set of exponentials can be considered as a set of independent basis vectors, and the function $n(\mathbf{r})$ can be considered as a vector in an infinite-dimensional vector space (the Hilbert space). Applying the orthogonal relation to Eq. (2), we can evaluate the coefficient of expansion,

$$n_{\mathbf{G}} = \frac{1}{v} \int_{\text{cell}} d^3 r n(\mathbf{r}) e^{-i\mathbf{G}\cdot\mathbf{r}}.$$
 (4)

Obviously, if $n(\mathbf{r}) = 0$, then $n_{\mathbf{G}} = 0$ for $\forall \mathbf{G}$. This also implies that, if

$$\sum_{\mathbf{G}} g_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} = \sum_{\mathbf{G}} h_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}},\tag{5}$$

then

$$g_{\mathbf{G}} = h_{\mathbf{G}} \text{ for } \forall \mathbf{G}. \tag{6}$$

To prove it, one simply put the two summations on the same side of the equation and identify $g_{\mathbf{G}} - h_{\mathbf{G}}$ as $n_{\mathbf{G}}$. Eq. (6) merely reflects the fact that the basis vectors, $\{e^{i\mathbf{G}\cdot\mathbf{r}}\}$, are linearly independent. How do we determine $u_k(\mathbf{r})$ from lattice potential $U(\mathbf{r})$?

Schrodinger equation

$$\left[\frac{\left(\vec{p}+\hbar\vec{k}\right)^2}{2m}+U(\vec{r})\right]u_{\vec{k}}(\vec{r})=\varepsilon_{\vec{k}}u_{\vec{k}}(\vec{r})$$

Keypoint: go to k-space to avoid derivatives and simplify the calculation

Fourier transform

1. the lattice potential

$$U(\vec{r}) = \sum_{\vec{G}} U_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} \qquad \mathbf{G} = 2 \pi \mathbf{n}/\mathbf{a}$$

2. the wave function

 $u_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} C_{\vec{k}}(\vec{G}) e^{-i\vec{G}\cdot\vec{r}}$ k=2 π n/L

Schrod. eq. in k-space aka. the central eq.

$$\left(\varepsilon_{\vec{k}-\vec{G}}^{0} - \varepsilon_{k}\right)C_{\vec{k}}(\vec{G}) + \sum_{\vec{G}'}U_{\vec{G}'-\vec{G}}C_{\vec{k}}(\vec{G}') = 0, \quad \varepsilon_{k}^{0} \equiv \frac{\hbar^{2}k^{2}}{2m}$$

Kittel uses λ_k Matrix form of the central eq. (in <u>1D</u>) $G=ng (g \equiv 2\pi/a)$ \therefore \vdots $\begin{pmatrix} \varepsilon_{k+2g}^{0} - \varepsilon_{k} & U_{g} & U_{2g} & U_{3g} & U_{4g} \\ U_{-g} & \varepsilon_{k+g}^{0} - \varepsilon_{k} & U_{g} & U_{2g} & U_{3g} \\ U_{-2g} & U_{-g} & \varepsilon_{k}^{0} - \varepsilon_{k} & U_{g} & U_{2g} \\ U_{-3g} & U_{-2g} & U_{-g} & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U_{-g} \\ U_{-4g} & U_{-3g} & U_{-2g} & U_{-g} & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U_{-g} \\ U_{-4g} & U_{-3g} & U_{-2g} & U_{-g} & \varepsilon_{k-2g}^{0} - \varepsilon_{k} \end{pmatrix} \begin{pmatrix} C_{k}(-2g) \\ C_{k}(0) \\ C_{k}(0) \\ C_{k}(2g) \end{pmatrix} = 0 \int particular k$

• For a given k, there are many eigen-values ε_{nk} , with eigen-vectors C_{nk} .

- The eigenvalues $\varepsilon_n(k)$ determines the energy band.
- The eigenvectors $\{C_{nk}(G), \forall G\}$ determines the Bloch states.

Example: $U(x) = 2U \cos 2\pi x/a$

•••

= $U \exp(2\pi ix/a) + U \exp(-2\pi ix/a)$ ($U_g = U_g = U$)

$$\begin{pmatrix} \varepsilon_{k+2g}^{0} - \varepsilon_{k} & U & 0 & 0 & 0 \\ U & \varepsilon_{k+g}^{0} - \varepsilon_{k} & U & 0 & 0 \\ 0 & U & \varepsilon_{k}^{0} - \varepsilon_{k} & U & 0 \\ 0 & 0 & U & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U \\ 0 & 0 & 0 & U & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U \\ 0 & 0 & 0 & U & \varepsilon_{k-2g}^{0} - \varepsilon_{k} \end{pmatrix} \begin{pmatrix} C_{k}(-2g) \\ C_{k}(0) \\ C_{k}(g) \\ C_{k}(2g) \end{pmatrix} = 0$$

• What are the eigen-energies and eigen-states when U=0?

• when $U(x) \neq 0$, for a particular k, u_{nk} is a linear combination of plane waves, with coefficients C_{nk} : $u_{nk}(x) = \sum_{G} C_{nk}(G)e^{-iGx}$

From the central eq., one can see that

$$C_{k+G'}(G+G') = C_k(G)$$

$$u_{nk}(x) = \sum_{G} C_{nk}(G) e^{-iGx}$$

$$\Rightarrow \quad u_{n,k+G}(x) = e^{-iGx} u_{nk}(x)$$

$$\psi_{n,\vec{k}+\vec{G}}(\vec{r}) = \psi_{n\vec{k}}(\vec{r})$$

$$\psi_{n,\vec{k}+\vec{G}}(\vec{r}) = \psi_{n,\vec{k}}(\vec{r})$$

• Bloch energy $\varepsilon_{n,k+G} = \varepsilon_{nk}$ (.:. info in the 1st BZ is enough)

Approximation of the central equation

• The Bloch state $\Psi_{nk}(x) = \sum_{G} C_{nk}(G) e^{i(k-G)x}$ is a superposition of ... $\exp[i(k-g)x]$, $\exp[i(kx]$, $\exp[i(k+g)x]$...

• If $k \sim 0$, then the most significant component of $\phi_{1k}(x)$ is $\exp[ikx]$ (little superposition from other plane waves).

• If $k \sim g/2$, then the most significant components of $\phi_{1k}(x)$ and $\phi_{2k}(x)$ are $\exp[i(k-g)x]$ and $\exp[ikx]$, others can be neglected.

Truncation:

••.

$$\begin{pmatrix} \varepsilon_{k+2g}^{0} - \varepsilon_{k} & U & 0 & 0 & 0 \\ U & \varepsilon_{k+g}^{0} - \varepsilon_{k} & U & 0 & 0 \\ 0 & U & \varepsilon_{k}^{0} - \varepsilon_{k} & U & 0 \\ 0 & 0 & U & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U \\ 0 & 0 & 0 & U & \varepsilon_{k-g}^{0} - \varepsilon_{k} & U \\ 0 & 0 & 0 & U & \varepsilon_{k-2g}^{0} - \varepsilon_{k} \end{pmatrix} \begin{pmatrix} C_{k}(-2g) \\ C_{k}(0) \\ C_{k}(g) \\ C_{k}(2g) \end{pmatrix} = 0 \quad \text{cutoff for} \\ k \sim g/2! \\ \vdots \end{cases}$$

:

Energy levels near zone boundary $k \sim g/2$

- Cut-off form of the central eq. $\begin{pmatrix} \varepsilon_k^0 \varepsilon & U \\ U & \varepsilon_{k-g}^0 \varepsilon \end{pmatrix} \begin{pmatrix} C(k) \\ C(k-g) \end{pmatrix} = 0$
- Energy eigenvalues

• Energy eigenstates

Kittel, p.225

Fig from Dr. Suzukis' note (SUNY@Albany)

Nearly-free-electron model in 2-dim (energy bands)

- 0th order approx.: empty lattice (U(*r*)=0)
- 1st order approx.: energy gap opened by Bragg reflection

 \rightarrow Bragg reflection whenever *k* hits the BZ boundary

• Free electron in vacuum:

$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 \mathbf{k}^2}{2m}$$

• Free electron in empty lattice:

 $\varepsilon_{\mathbf{k}} = \varepsilon_{n\mathbf{k}'} = \frac{\hbar^2 \left(\mathbf{k}' + \mathbf{G}\right)^2}{2m}$ $\mathbf{k} = \mathbf{k'} + \mathbf{G}$ $\mathbf{k'} \in 1^{st} BZ$

Folded parabola along ΓX (reduced zone scheme)

2π/a

Band	$Ga/2\pi$	$\epsilon(000)$	$\epsilon(k_x 00)$
1	000	0	k_{x}^{2}
2,3	100,100	$(2\pi/a)^2$	$(k_x \pm 2\pi/a)^2$
4,5,6,7	010,010,001,001	$(2\pi/a)^2$	$k_x^2 + (2\pi/a)^2$
8,9,10,11	$110,101,1\overline{1}0,10\overline{1}$	$2(2\pi/a)^2$	$(k_x + 2\pi/a)^2 + (2\pi/a)^2$
12,13,14,15	<u>110,101,110,101</u>	$2(2\pi/a)^{2}$	$(k_x - 2\pi/a)^2 + (2\pi/a)^2$
16,17,18,19	011,011,011,011	$2(2\pi/a)^2$	$k_x^2 + 2(2\pi/a)^2$

 $\frac{\pi}{a}$

Comparison with real band structure

The energy bands for "empty" FCC lattice Actual band structure for copper (FCC, 3d¹⁰4s¹)

From Dr. J. Yates's ppt

