Chap 9 Electron-electron interactions

e e-e interaction and Pauli exclusion principle (chap 17)
» Hartree approximation
» Hartree-Fock approximation

» Exchange-correlation hole

 Density functional theory




What's missing with the non-interacting electrons?

» exchange effect

* screening effect

» normalization of band gap (and band structure, FS)
* quasiparticle, collective excitation
 superconductivity

Beyond non-interacting electron
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This is a differential eq. with N=1023 degrees of freedom.
We need approximations.



Hartree approximation (1928):

No quantum correlation
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Hartree (or direct) potential VM (r)

Each electron moves in the potential from all the other electrons,

* Need to be solved self-consistently (by iteration).
» Self-consistency doesn’t mean the result is correct.

What's wrong with the HA?
* The manybody wave function violates the Pauli principle
» The calculated total energy is positive (means the electron gas is unstable)



Self-consistent Hartree approximation

1. choose initial {;}
\J

2. construct n(r) = E |y, () i — V] (F):ezjd3r'|9(r)l| —
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3. solve —f—vz +U (F) 4V, (r)}wn (F) =&y, (F)
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4. construct n'(F) = ZI ' (F)[
l

5. if |n'(F) —n(F)|< 5, then STOP.

else let w.(r) =y " (r), GOTO 2

E. Kaxiras, Atomic and Electronic Structure of Solids, p.46



Hartree-Fock approximation (1930):
* A brief review of variational principle (single particle version)
Hy (F) = ey (F)
the ground state can be obtained by minimizing (y |H|y),
under the constraint (y |y) =1

sy ()= 2((wlv)-1)=0 G>2)

» Hartree-Fock approximation

I.e.
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Variational principle
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* The exchange potential exists only between electrons with parallel spins.

» The exchange potential is non-local! This makes the HFA much harder to calculate!

« Still need self-consistency.

* Again, no guarantee on the correctness (even qualitatively) of the self-consistent result!



Hartree-Fock theory of uniform electron gas

 The jellium approximation
Positive lon charges Uniform background

Smooth off
—

» Below we show that plane waves are sol'ns of HFA
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* If, when you remove one electron from an N-electron system, the other N-1

wave functions do not change, then | € (k)| is the ionization energy
(Koopman’s theo. 1933).

* In reality, the other N-1 electrons would relax to screen the hole created by
lonization. (called “final state effect”, could be large.)

 Total energy of the electron
gas (in the HFA)
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* More on the HF energy
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The conditional probability to find a spin-s’ electron at r’,
when there is already a spin-s electron at r.

* In the jellium model (n;=N/2V),
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» Fock (exchange) potential keeps electrons with the same spin apart

(This is purely a quantum statistical effect)
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* Beyond HFA

Now there is a hole even if the electrons have different spins!

exchange-correlation (xc) hole
(named by Wigner)

gt \ 2l
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DOS for an electron gas
in HA and HFA

What's wrong with HFA?

* In the HFA, the DOS goes to zero at the Fermi energy.

HFA gets the specific heat and the conductivity seriously wrong.

* The band width is 2.4 times too wide (compared to free e)

* The manybody wave function is not necessarily a single Slater determinant.

Beyond HFA:

» Green function method: diagrammatic perturbation expansion
» Density functional theory: inhomogeneous electron gas, beyond jellium
e Quantum Monte Carlo



Green function method (diagrammatic perturbation expansion)

Correction to ShE O BN
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energy
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* The energy correction beyond HFA is called correlation energy (or stupidity energy).

Ec = Eexact- Enr
» Gell-Mann+Bruckner’s result (1957, for high density electron gas)

E/N =2.21/rg? + 0 - 0.916/r5 + 0.0622 In(rg) - 0.096 + O(rg)

= Ex+Ey-Eg+E; (Ein Ry, rgin ag)

 This is still under the jellium approximation.
» Good for rg<1, less accurate for electrons with low density (Usual metals, 2 <rq <5)
 E. Wigner predicted that very low-density electron gas (r5 > 10?) would
spontaneously form a non-uniform phase (Wigner crystal)



Luttinger, Landau, and quasiparticles

* Modification of the Fermi sea
due to e-e interaction (T=0)

Perturbation to all orders

(if perturbation is valid)

g,

1

» There is still a jump that defines the FS (Luttinger, 1960).
Its magnitude Z (<1) is related to the effective mass of a QP.

» A gquasiparticle (QP) = an electron “dressed” by other electrons.

A strongly interacting electron gas = a weakly interacting gas of QPs.

(Landau, 1956)

* It is a quasi-particle because, it has a finite life-time. Therefore,

its spectral function has a finite width:
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This peak sharpens as
we get closer to the FS
(longer lifetime)



Density functional theory

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

Inhomogeneous Electron Gas™

" P, HoHENBERGT
Fcole Normale Superieure, Paris, France
AND

W. Koun}i
Ecole Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France
and
University of California at San Diego, La Jolla, Caltfornia
(Received 18 June 1964)

This paper deals with the ground state of an interacting electron gas in an external potential #(r), It is
proved that there exists a universal functional of the density, F[#(r)], independent of #(r), such that the ex-
pression E= [v(r)n (r)dr+ F[x(r)] has as its minimum value the correct ground-state energy associated with
2(r). The functional F[#(r)] is then discussed for two situations: (1) n(r)=ne+7(r), fi/n<<1, and
(2) n(r) = ¢(r/ry) with g arbitrary and 7o — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented. '

(TT02/92/1T AQ) sswn 8,58 paNd

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15 NOVEMBER 19635

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Konn anp L. J. Soam el
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of %.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

(TT02/92/TT AQ) sawn 8628T pPaud



“density functional theory" appears in title or abstract
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Particle density  n(F) = de?’rzderg---Id?’rN\P*(F )P (FLT,e0)

Usually: U,, > ¥ —n
DFT: n— ' = U,

The 1t Hohenberg-Kohn theorem

The potential U, is a unique functional of the ground state density n.

Pf: suppose U, U’ give the same ground state density, n=n’
Es =(Ws|H|Ws); Eg'=(¥s'|H'|¥:")
Es'<(¥e|H'|Ws)=(Ps|H+U'-U|¥s)=E; +(¥s|U-U|¥;)
—>E.'<E, +jd3r n(F)[U (F)'~U (F)]
same argument also gives

Es <Eg '+jd3r n(r) [U (r)-u '(F)] In principle, given n(r), one
= E.+E, <E,+E;' N can uniquely determine U(r).




Since n(r) determines U, (r), which determines everything else (Eg, |G>... etc),

one can say that, Eg is a functional of n(r):

Es[n]=T[n]+U[n]+V,[n]

The 2nd Hohenberg-Kohn theorem
The true ground state density n minimizes the energy functional Eg[n],

with the following constraint, fd3r n(F) =N.

o

Pf:
If n’ is a density different from the ground-state density n in potential U(r),

then the U’(r) (and WU’), that produce this n’ are different from the W 5 in U(r).
According to the variational principle,

E[n]=(¥"

H|W")> (Y, |H|¥s)=Esln]

Thus, for potential U(r), E [n’] is minimized by the ground-state density n.



» The energy functional

Eg[n]=T[n]+V,[n]+U[n]
= F[n]+U[n] U[n]=[d°r n(")U (F)

The F [n] functional is the same for all electronic systems.

In principle, what has been accomplished here is enormous. In principle, there
exists a universal functional F [n] that needs to be found once and for all. One adds
to it any particular set of nuclei, in the form of the potential U(7), and then has only
to find the function n(7) that minimizes it in order to solve the full complexities of
Schrédinger’s equation.

“No ones knows the true F [n], and no one will, so it is replaced by various
uncontrollable approximations.” (Marder, p.247)



F [n] =T [n] +VH [n] +ch [n]

* Kinetic energy functional d3k  #%Kk? v H2k°

T[n]=V|

For free electron gas (27) *2m  107°m

1/3
Thomas-Fermi approx. k. = (37z2n(f))
ood for slow density variation 2/3
(9 y ) 32 (37[2)

» Hartree energy functional 2 n(F)n(F’)

& A3z,
(exact) Viuln]= 2 ”d rd’r IF—F'|

» Exchange-correlation functional

Local density approx. VXEDA[n] ~ Id3r n(r) ¢, (n(r))
(LDA)

Vxc[n] calculated
with QMC methods
(Ceperley & Alder)

where ¢ ,.[n] is the xc-energy (per particle) for free electron gas with local density n(r).

For example, 3e k 3 e? 1/3
n) = =—="(3z°n(F
&)= 4 4 72'( (e ))
Generalized
gradient approx. V,e "[n]= Id rn(r) e, [n(r), Vn(r)]

(GGA)



Kohn-Sham theory No approx. yet

3 . L, € 3 3., N(F)N(r)
E[n]:T[n]+_[d rn(r)U(r)+?Hd rdr wac[n]

1. KS ansatz: Parametrize the particle density in terms of a set of
one-electron orbitals representing a non-interacting reference system

— —\2
n(r) = Y| (")
2. Calculate non-interacting kinetic energy in terms of the ¢| 'S
N B,
Tln] > T[] =3 [d’r 4 (r)(—ﬂvﬂmr)
if you don't like this approximation, then keep
T[n] = To[n] + (T[n] _To[n])

3. Determine the optimal one-electron orbitals using the variational
method under the constraint (4 |¢j>= 5

5l 34 ((414)-1) -0

From J. Hafner’s slides



_ not valid for
Kohn-Sham equation

e o
= }M)_Wr)

[n] =V, [n]+T[n]-T,[n]

hz 2 = 2
— - e i
{ VI U ()4l |

where V

txc
 Similar in form to the Hartree equation, and much simpler than HF eq.

However, here everything is exact, except the V,, . term. (exact but unknown)
 Neither KS eigenvalues A ;, nor eigenstates, have accurate physical meaning.

N
However, ) = M|4(F) <« the density is physical
i=1

Also, the highest occupied A ; relative the vacuum is the ionization energy.

* If one approximates T~T,, and use LDA,

then é\/txc [n(r)]
on(r)

Ve In] = [d*rn(P) &, [n(7)]

= &y [n(r)]

2m T -7

{—h—2V2+U(F)+e2jd ) +gxc[n(f)]}¢i(F):/1l¢i(F)



Self-consistent Kohn-Sham equation, an ab initio theory

1. choose initial {¢ } Parameter
free
\J
v =\ 2 - 2 43 N(FY) =
2. construct n(F) =D |4 (F)[" > V,s(F) =e jd r F ﬂ|+gxc[n(r)] 7
i F—r
! (for LDA)

2

3. solve _f—mvz +U (F) +Vs (F)}Wi (F) =4¢'(F)
\
4. construct n'(r) = > | ¢, (F) °

!
5. if |n'(F) —n(F)| < &, then sTOP.
else let ¢ (F) =¢". (), GOTO 2

2 N
e n(r)n(r
» Total energy E = Z/ll ——jjd3rd3r w
i 2 |F -7
Double-counting correction.
Recall similar correction in HFA.



Strength of DFT

From W.Aulbur’s slides
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Weakness of DFT

» Band-gap problem: HKS theorem not valid for excited states.

Band-gaps in semiconductors and insulators are usually underestimated.
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» Neglect of strong correlations

- Exchange-splitting underestimated for narrow d- and f-bands.
- Many transition-metal compounds are Mott-Hubbard or charge-transfer

insulators, but DFT predicts metallic state.

LDA, GGAs, etc. fail in many cases with strong correlations.
From J. Hafner’s slides



