
 Semiclassical model of electron dynamics

How does the electron move in a lattice + weak external field?

so that interband transition can be ignored

ü Electric field à Bloch oscillation

ü Magnetic field à cyclotron motion

ü Electric+magnetic field à Hall effect

 



l Energy dispersion (periodic zone scheme)

   E(k)

k

l Electron velocity

l Electric current

l For crystals with inversion symmetry,

En(k)=En(-k)

à electrons with momenta hk and -hk have opposite velocities

à no net current in equilibrium

    E

 shifted by eEτ/h

Note: The relaxation time of a perfect crystal is infinite.

The resistivity comes not from periodic ions, but from

impurities, defects, thermal vibrations…  etc
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l The concept of holes

The current in a filled band is zero even if E ≠ 0

 ∴unoccupied states behave as +e charge carriers

l The concept of effective mass

Near the bottom of a conduction band,

Reciprocal effective mass matrix

Ø In general, electron in a flatter band has a larger m*

Ø Negative effective mass:

If E(k) is     (e.g. near zone boundary) then m*<0

à electron (-e) with negative m* = hole (+e) with positive m*
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Ø For a spherical FS, m*
ij=m*dij, one m* is enough.

Ø For ellipsoidal FS, there can be at most three different m*s

Eg. the FS of Si is made of six identical ellipsoidal pockets

Near the conduction band bottom,

T

 L

For Si,

Eg = 1.1 eV, mL = 0.9 m, mT = 0.2 m

(it’s more difficult for the electron to move along the L

direction because the band is flatter along that direction)

E k E k
m

k
m

k
mg

x

L

y

T

z

T

( )
r h h h= + + +

2 2 2 2 2 2

2 2 2



Electron dynamics in an external field

Consider a wave packet centered at k in k-space, then

(The derivation is nontrivial and is neglected here)

Ø Notice that E is the external field, whcih does not include the

lattice field. The effect of lattice is hidden in En(k)!

Ø This looks like the usual Lorentz force eq. But the validity of

this equation is more limited. It is good only if

1. Interband transition can be neglected (not valid if there is

electric or magnetic breakdown due to a strong field).

2. E and H can be non-uniform in space, but they have to be

much smoother than the lattice potential.

3. E and H can be oscillating in time, but with the condition
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Bloch electron in a uniform electric field

 e(k)

k

   v(k)

k

In a DC electric field, the electrons decelerate and reverse its

motion at the BZ boundary!

 A DC bias produces an AC current!! (Bloch oscillation)
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l Why the oscillation is not observed in ordinary crystals?

To complete a cycle (a is the lattice constant),

eET / h = 2π / a à T = h/ eEa

For E=104 V/cm, and a=1 A, T=10-10 sec

But electron collisions take only about 10-14 sec.

∴ the Bloch electron cannot get to the zone boundary

l To observe it, need

1. stronger E field à but only up to about 106 V/cm

2. larger a à use superlattice (eg. a = 100 A)

3. reduce collision time à use high quality sample

(Mendez et al, PRL, 1988)

l Discrete spectrum due to oscillation:

l Bloch oscillator generates THz microwave:

frequency ≈ 1012~13, wave length λ ≈ 0.01 mm - 0.1mm

(Waschke et al, PRL, 1993)

E

Wannier-“Stark” ladders



Bloch electron in a uniform magnetic field

Therefore, 1. Change of k is perpendicular to the H field,

à k|| does not change

and 2. E(k) is a constant of motion

This determines uniquely the electron orbit on the FS

H

l For spherical FS, it is just the usual cyclotron orbit,

l For connected FS, there might be open orbits
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l Orientation of the orbit

smaller k smaller k

higher energy lower energy

à The "hill" is always on one's right hand side

Cyclotron orbit in real space

r-orbit k-orbit

rotated by 90 degrees and scaled by   hc/eH =λB
2

λB = 256 A at H= 1 Tesla (magnetic length)
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Temporal period of the orbit

Therefore,

Compare with the period of a cyclotron orbit, we have

ωc=eH/m*c, where the cyclotron effective mass is
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More on the cyclotron effective mass

Near a band minimum

where M is the effective mass matrix.

It can be shown that (Prob. 12.2 (a))        3  H//z

Pf: From the theory of matrix diagonalization, we have

M = R MD RT

where MD is the diagonalized matrix, and

Note that e3 is the vector along 3-axis on the (x,y,z)-coord;

(e1
3.e2

3.e3
3) are the components of z on the (1,2,3)-coord.
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Band structure of Ge  FS has eight ellipsoids

(e1
3.e2

3.e3
3)=(sinθ cosφ, sinθ sinφ, cosθ)

For a symmetric ellipsoid, m1=m2=mT, m3=mL

  à Mzz = sin2 θ mT + cos2 θ mL

   mT=0.082m, mL=1.59m for Ge

 H lies on the (110) plane
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Bloch electron in crossed E and H fields (both uniform)

H

The 2nd term is usually very small compared to ε(k)

So the effect is to tilt the band structure slightly

(max along w, min ⊥ w), and earlier analysis about the

cyclotron orbit still applies (not restricted to closed orbits).

Real space orbit

A steady E×H drift
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Current density

If “all” orbits on the FS are closed, then

This result is valid for different band structures!

Hall coefficient

If both electrons and holes are present in a metal, then

R>0 or <0 depends on whether e’s or h’s dominate

(eg. Zn and Cd have positive R)

The analysis is more complicated if there are open orbits

(neglected here)

r vj qn r⊥ ⊥= &

v r& $ $ $ $r e
E
H

E H j
qnc
H

E H⊥ ⊥= × → = ×

R
n ec

R
n ece

e
h

h

= − =
1 1

;

R
R R n e

m
e e h h

e h

e h
e h e h

e h

=
+

+
=

σ σ

σ σ
σ

τ2 2

2

2

b g ,
*,

, ,

,



What happens if the H field is very strong?

Rigorous calculation using the Schrodinger shows that,

if Ha2=(p/q)×flux quantum,

where a is the lattice constant, and p.q are co-prime integers,

then one Bloch band splits to q subbands

Hofstadter’s butterfly spectrum (PRB, 1976)

quantized cyclotron energies (next chap)

 originally only one Bloch band

For a = 0.1 µm, need H = 10 T to get p/q=1/2

Very challenging to observe it experimentally



“Magnetic” Bloch band

(eg., the subbands in the Hofstadter spectrum)

For magnetic Bloch band carrying quantized Hall conductance,

the electron obeys slightly different semiclassical dynamical eqs.

Chang and Niu, Phys. Rev. B53, 7010 (96)


